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Abstract
This paper revisits the notion of case base competence in the light of recent advances in the modeling
of analogical reasoning, based on the idea of similarity transfer from a situation space to an outcome
space. For that we consider the CoAT indicator, that measures the compatibility between two similarity
measures on a case base, and use it to define an intrinsic measure of competence of a case base with
respect to a reference set. Initial experimental results show that the proposed competence measure
correlates with the performance of the CoAT prediction algorithm. In fact, our preliminary results seem
to indicate that, under some initial conditions, our competence based model can fit any classification
boundary. We then revisit the notions of case competence and locality, and show that some source cases
may degrade the overall case base competence while others may improve it, and that a given source case
may have disparate influence on different regions of the case space.
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1. Introduction

Case bases are one of the main sources of knowledge used in case-based reasoning (CBR), along
with similarity knowledge, adaptation knowledge and domain knowledge [1]. Case acquisition
and maintenance therefore constitute crucial steps in the knowledge engineering process of
a CBR system. Acquiring and maintaining cases may be expensive, and case storage capacity
may be limited or constrained by selection criteria. Crafting a case base for a given task thus
requires addressing questions such as “which cases should be included in the case base?”, which
can alternatively be expressed as “which cases are the most competent?”, where the definition
of the competence notion can be seen as the formalization of this issue.

Such questions have been extensively studied in the literature on case base maintenance
(e.g., [2, 3, 4, 5, 6, 7, 8]). Most competence models assume that problems are solved by a 𝑘-
Nearest Neighbor algorithm (often with 𝑘 = 1) augmented by case adaptation, and are strongly
influenced by the way this algorithm works. For instance, it is often assumed that only the
most similar cases may contribute to solving a new case, provided that they are themselves
adaptable. The competence of a case is typically assessed by computing its coverage, i.e., the
set of cases that it may contribute to solving. Yet beyond approaches based on the 𝑘-Nearest
Neighbor algorithm, no case-based prediction algorithm actually complies with this assumption.
Algorithms such as CCBI [9], PossIBL [9], or CoAT [10], take into account the similarities with
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all source cases in order to make a prediction. Here we examine competence criteria suitable
for such approaches.

Competence methods yield guidance for case deletion to minimize the competence loss in the
case base compression process [5, 6]. However, determining a suitable notion of competence
over the whole case base is challenging and, to our knowledge, no theoretical guarantees exist
to relate the competence of a case base and the performance of a corresponding CBR system.

Recent advances in the modeling of analogical transfer shed new light on the case base
competence problem. It has been shown [11] that all case-based prediction methods share the
common inference principle based on the transfer of similarity knowledge from the situation
space, in which the cases are described, to an outcome space, in which their attached solutions
are described. This transfer can then be achieved by optimizing a measure of compatibility
between two similarity measures, respectively associated with each of the two spaces. The
latter idea motivated the case-based prediction method CoAT [10, 12, 13] that relies on the
optimization of a global compatibility indicator between two similarity measures on the case
base. In this framework, the predicted outcome is the one that entails the least increase in
the value of the CoAT indicator. The latter can be interpreted as an intrinsic indicator of the
optimality of the case-based setting for the task at hand. Preliminary results showed it can be
used to assess the quality of similarity measures or of solutions.

In this paper, we further explore this indicator to address the problem of case competence.
The main idea is to exploit this indicator to define an intrinsic measure of competence of a
case base, which could be used later to obtain theoretical guarantees on the link between the
competence of a case and the performance of a case-based classifier or predictor. To do so,
we first propose to interpret the CoAT global indicator in an energy-based framework [14].
Then the competence of a source case can be intuitively related to its ability to reduce the
energy of correct outcomes and to increase the energy of incorrect outcomes. For instance, in a
classification setting, this would mean the case is lowering the energy of the good class, and
increasing the energy of all others.

This new approach to the problem of case (base) competence has two noteworthy conse-
quences. First, rather than taking the traditional case base maintenance view of considering
only the nearest cases, it considers the compatibility of all cases in the case base. Intuitively,
this could be important for deletion scenarios, because case bases with lower energy should
provide more stable results when cases are deleted. Second, this makes clear the potential
ramification that case deletion could either decrease or increase system performance: cases may
be competent (increased overall performance) w.r.t. a given class, while entailing competence
degradation (decreased overall performance) w.r.t. another class.

To support the latter and establish the relation between competence and performance of
a case-based system, we propose two loss functions (see Sec. 4): one that corresponds to the
intuitive notion of competence (i.e., counting positively the energy of correct outcomes and
negatively the energy of incorrect ones), and the other inspired by the hinge loss. We perform
a comparative study of the two and observe that the latter is preferable to the former. Thus
focusing on the hinge loss, we conduct several empirical studies to assess both the performance
and robustness of this CoAT-based competence notion (see Sec. 5) in various initial settings.
These experiments also indicate the potential use of our competence notion for case base
compression and maintenance purposes. Furthermore, they support that our competence-based
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framework can produce surrogate models capable of approximating different classification
boundaries.

The paper is organized as follows. In Sec. 2 we briefly discuss well-known approaches to
case base maintenance, and recall key definitions from related work on case competence. The
definition of the CoAT indicator is recapped in Sec. 3 and then used in Sec. 4 to propose a new
definition of case base competence and of competence of an individual case. We present several
empirical studies in Sec. 5 to support our performance and robustness claims, and to analyze
the behavior of our approach both quantitatively and qualitatively. Sec. 6 concludes the paper
and discusses several perspectives for future work.

Main contributions. The main contributions of the paper are the following:

• We introduce an energy-based framework that relies on the optimization of the CoAT
indicator as a measure of similarity compatibility, and which is used to propose new
measures of case base competence w.r.t. different loss functions.

• We show empirically that thus defined, the case base competence is tightly linked to the
performance of case-based models, which constitutes a promising step towards theoretical
guarantees of performance.

• We propose fine-grained competence notions, namely, w.r.t. individual source cases and
w.r.t. individual reference cases, which can be used to identify areas of “expertise” of
cases in a case-based system.

• We present an empirical study to assess the robustness of the proposed approach w.r.t.
to different case base initializations and reference case sets, followed by an iterative
and qualitative analysis that shows the potential of the proposed approach for case base
maintenance and compression, as well as for fitting any classification boundary.

2. Basic Background and Motivation

This section briefly presents the notation used throughout the paper and recaps the definition
of the case based maintenance task in the CBR setting.

2.1. Key Definitions

Let 𝒮 denote an input space, and ℛ an output space. An element of 𝒮 is called a situation, and an
element of ℛ is called an outcome, or a result. A set 𝐶𝐵 = {(𝑠1, 𝑟1), . . . , (𝑠𝑛, 𝑟𝑛)} of elements
in 𝒮 ×ℛ is called a case base. An element 𝑐 = (𝑠, 𝑟) ∈ 𝐶𝐵 is called a source case. In addition,
the spaces 𝒮 and ℛ are respectively equipped with the similarity measures 𝜎𝒮 and 𝜎ℛ, that
respectively denote the similarity measure on situations and on outcomes. Let 𝒯 ⊂ 𝒮 ×ℛ be a
set of cases called a reference set, and 𝑐𝑡 = (𝑠𝑡, 𝑟𝑡) ∈ 𝒯 be a reference case. We will write (𝑠𝑡, �̂�)
to denote a potential case constructed by keeping the same situation 𝑠𝑡 ∈ 𝒮 , but choosing a
different outcome �̂� ∈ ℛ, �̂� ̸= 𝑟𝑡 for the case.
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2.2. Case Base Maintenance

Case base maintenance revises the contents or organization of a case base to improve perfor-
mance, and is a longstanding research area for CBR (e.g., [15]). Much of this work has studied
case base compression by case deletion [5]. Compression efforts were initially motivated by the
desire to control retrieval costs and respect storage constraints. Advances in computational
power have reduced some of these concerns in practice [16] but compression remains useful
when efficiency is paramount and for reasons such as reducing the number of cases for a
knowledge engineer to maintain. Deletion of cases may remove the knowledge required to
solve particular problems, motivating maintenance work focused on retention of case base
competence, which Smyth [6] and McKenna define as the range of problems a CBR system can
successfully solve.

Case base compression strategies are often deletion-based, aimed at successively removing
cases whose loss will least harm competence. Estimates of case competence contributions are
commonly done based on the existing cases in the case base, under the representativeness
assumption [6] that the case base is a good predictor of the distribution of future problems. This
assumption is expected to hold for domains well suited to CBR, when the case base is sufficiently
mature, though may be endangered by problem drift (e.g., [17]). Estimation of expected case
competence contributions is commonly based on considering relationships between cases and
their nearest neighbors in the case base, favoring cases that have high coverage of other cases
and low reachability, i.e., that are recoverable from fewer cases [6].

This paper presents a maintenance perspective that is novel in three ways. First, rather than
emphasizing the relationship of cases to nearby neighbors, the core of the approach is global
optimization of a case base energy function. Second, rather than using a global approximation
of future problems, it defines competence with respect to specific reference sets. Third, it
questions the assumption that case base compression entails competence loss and illustrates
that compression may actually enhance performance—providing a new motivation for case base
compression.

3. The CoAT Method

The CoAT method [10, 12, 13] performs analogical transfer by minimizing a global indicator of
compatibility between two similarity measures. In this section, we recall the definition of this
indicator, and show that it can be seen as an energy function.

3.1. Definition of the CoAT Indicator

The compatibility of 𝜎ℛ with 𝜎𝒮 for a given case base 𝐶𝐵 is measured globally on the case
base 𝐶𝐵, by a global indicator denoted Γ(𝜎𝒮 , 𝜎ℛ, 𝐶𝐵). The latter takes an ordinal point of
view on the whole case base 𝐶𝐵, by checking if the order induced by 𝜎ℛ is the same as the one
induced by 𝜎𝒮 . The following continuity constraint is tested on each triple of cases (𝑐0, 𝑐𝑖, 𝑐𝑗),
with 𝑐0 = (𝑠0, 𝑟0), 𝑐𝑖 = (𝑠𝑖, 𝑟𝑖), and 𝑐𝑗 = (𝑠𝑗 , 𝑟𝑗):

if 𝜎𝒮(𝑠0, 𝑠𝑖) ≥ 𝜎𝒮(𝑠0, 𝑠𝑗), then 𝜎ℛ(𝑟0, 𝑟𝑖) ≥ 𝜎ℛ(𝑟0, 𝑟𝑗). (𝐶)
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Constraint (𝐶) expresses that whenever a situation 𝑠𝑖 is more similar to situation 𝑠0 than to
situation 𝑠𝑗 , this order should be preserved on outcomes. A triple (𝑐0, 𝑐𝑖, 𝑐𝑗) does not satisfy (𝐶)
if case 𝑐𝑖 is more similar to case 𝑐0 than to case 𝑐𝑗 for situations, but less similar for outcomes, i.e.,
when 𝜎𝒮(𝑠0, 𝑠𝑖) ≥ 𝜎𝒮(𝑠0, 𝑠𝑗) and 𝜎ℛ(𝑟0, 𝑟𝑖) < 𝜎ℛ(𝑟0, 𝑟𝑗). Such a violation of the constraint
is called an inversion of similarity. The indicator Γ(𝜎𝒮 , 𝜎ℛ, 𝐶𝐵) counts the total number of
inversions of similarity observed on a case base 𝐶𝐵:

Γ(𝜎𝒮 , 𝜎ℛ, 𝐶𝐵) = |{((𝑠0, 𝑟0), (𝑠𝑖, 𝑟𝑖), (𝑠𝑗 , 𝑟𝑗)) ∈ 𝐶𝐵 × 𝐶𝐵 × 𝐶𝐵 such that

𝜎𝒮(𝑠0, 𝑠𝑖) ≥ 𝜎𝒮(𝑠0, 𝑠𝑗) and 𝜎ℛ(𝑟0, 𝑟𝑖) < 𝜎ℛ(𝑟0, 𝑟𝑗)}|.

For a new source 𝑠𝑡, the transfer inference consists in finding the outcome 𝑟𝑡 that leads to the
new case 𝑐𝑡 = (𝑠𝑡, 𝑟𝑡) that minimizes the value of the indicator:

𝑟𝑡 = argmin
𝑟∈ℛ

Γ(𝜎𝒮 , 𝜎ℛ, 𝐶𝐵 ∪ {(𝑠𝑡, 𝑟)}).

An important aspect to notice is that the CoAT method makes use of the whole case base 𝐶𝐵,
and not only the most similar case(s), in order to predict the outcome of the new case.

3.2. An Energy Function View on the CoAT Method

After briefly reminding the principles of the energy-based framework for solving machine
learning tasks, this section proposes to interpret the CoAT optimization of the global indicator
in this setting.

Energy-based models. Inspired from statistical physics, energy-based models [14] specify
a probability distribution 𝑝(𝑥; 𝜃) = 𝑒−𝐸𝜃(𝑥)/

∫︀
𝑒−𝐸𝜃(𝑥)𝑑𝑥 via a parameterized scalar-valued

function 𝐸𝜃(𝑥) called an energy function. In its conditional version, the definition of an energy
function 𝐸𝜃 : 𝒳 ×𝒴 −→ R associates to each pair (𝑥, 𝑦) ∈ 𝒳 ×𝒴 a scalar value 𝐸𝜃(𝑥, 𝑦) that
represents the compatibility between the input 𝑥 and the output 𝑦 under the set of parameters
𝜃. The energy function 𝐸𝜃 takes low values when 𝑦 is compatible with 𝑥, and higher values
when 𝑦 and 𝑥 are less compatible. The goal of the energy-based inference is to find, among a set
of outputs 𝒴 , the output 𝑦* ∈ 𝒴 that minimizes the value of the energy function:

𝑦* = argmin
𝑦∈𝒴

𝐸𝜃(𝑥, 𝑦).

Given a family of energy functions 𝐸𝜃(𝑥, 𝑦) indexed by a set of parameters 𝜃, the goal of
the learning step is to optimize the 𝜃 parameters in order to “push down” (i.e., assign lower
energy values to) the points on the energy surface that are around the training samples, and to
“pull up” all other points. Contrastive divergence [18] is a common learning strategy that, given
a numerical hyperparameter 𝜆, consists in optimizing a contrastive loss function such as the
hinge loss, which is defined, for a training sample (𝑥𝑘, 𝑦𝑘) and a generated out of distribution
sample (𝑥𝑘, 𝑦) by:

ℓ(𝜃, 𝑥𝑘, 𝑦𝑘) = max(0, 𝜆+ 𝐸𝜃(𝑥𝑘, 𝑦𝑘)− 𝐸𝜃(𝑥𝑘, 𝑦)).

The hinge loss associates a loss value to a training sample (𝑥𝑘, 𝑦𝑘) whenever its energy is not
lower by at least a margin 𝜆 than the energy of the incorrect sample (𝑥𝑘, 𝑦).
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The CoAT indicator as an energy function. The CoAT case-based prediction method can
be interpreted in the energy-based model framework, in which the energy 𝐸𝜃(𝑠𝑡, 𝑟) of any new
case (𝑠𝑡, 𝑟) is given by the value of the Γ indicator when the case is added to the case base, i.e.,

𝐸𝜃(𝑠𝑡, 𝑟) = Γ(𝜎𝒮 , 𝜎ℛ, 𝐶𝐵 ∪ {(𝑠𝑡, 𝑟)}).

The input space 𝒳 is the situation space 𝒮 and the output space 𝒴 is the outcome space ℛ. The
energy function 𝐸𝜃 : 𝒮 ×ℛ −→ R measures the compatibility of the outcome similarities with
the added situation similarities when the potential new case 𝑐�̂� = (𝑠𝑡, 𝑟) is added to the case
base. The energy function 𝐸𝜃 is parameterized by 𝜃 = (𝜎𝒮 , 𝜎ℛ, 𝐶𝐵) which includes the case
base 𝐶𝐵. The goal of the energy-based inference is to find, among the set of potential outcomes
𝑟 ∈ ℛ, the outcome 𝑟𝑡 that minimizes the value of the energy function:

𝑟𝑡 = argmin
𝑟∈ℛ

𝐸𝜃(𝑠𝑡, 𝑟).

4. Measuring Competence

In this section we introduce new case (base) competence measures using the previous energy-
based framework of the CoAT indicator, w.r.t. different loss functions. We then propose fine-
grained variants of competence, at individual and reference case levels.

4.1. Idea of the Method

In the CoAT energy-based model, the energy function 𝐸𝜃(𝑠𝑡, 𝑟) is used to compute a (scalar)
energy value for each potential outcome 𝑟 of the new case 𝑐𝑡. The difference between the
energy of the predicted outcome and the lowest energy of all other outcomes can be interpreted
as a measure of prediction confidence. Therefore, our goal is to capture the idea that the
competence of a case base should be related to its ability to maximize the prediction confidence,
by decreasing the energy of the correct outcome of a new case and increasing the energy of
incorrect outcomes.

We consider two different loss functions of the underlying energy-based model that take as
input, besides the 𝜃 = (𝜎𝒮 , 𝜎ℛ, 𝐶𝐵) parameters of the energy function, that are considered
to be fixed, an auxiliary set of reference cases 𝒯 . The intuition is that, if 𝜎𝒮 and 𝜎ℛ are fixed,
optimizing such a loss function should allow us to learn the right case base 𝐶𝐵 for the task, i.e.,
address the case base maintenance issue.

4.2. Competence of a Case Base

This section discusses two definitions of the competence of a case base 𝐶𝐵 with respect to a
reference set 𝒯 , that are defined from two different loss functions of the energy-based model.

MCE loss competence. The first definition of competence we propose, denoted 𝐶𝑀𝐶𝐸

relies on the notion of the minimum classification error loss ℓ𝑀𝐶𝐸 [14] classically used in
the energy-based framework. More precisely, 𝐶𝑀𝐶𝐸 computes the average value, across the
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reference set, of this loss ℓ𝑀𝐶𝐸 that is defined as the difference between the energy of the
correct outcome and the minimum energy of a reference case if it were assigned a different
outcome:

𝐶𝑀𝐶𝐸(𝐶𝐵, 𝒯 ) = − 1

|𝒯 |
∑︁
𝑐𝑡∈𝒯

ℓ𝑀𝐶𝐸(𝐶𝐵, 𝑐𝑡),

where ℓ𝑀𝐶𝐸(𝐶𝐵, 𝑐𝑡) = 𝐸𝜃(𝑠𝑡, 𝑟𝑡)−min
�̂� ̸=𝑟𝑡

𝐸𝜃(𝑠𝑡, �̂�).

For a correctly classified instance, ℓ𝑀𝐶𝐸(𝐶𝐵, 𝑐𝑡) is a negative value whose magnitude can be
interpreted as the prediction confidence of CoAT, as mentioned previously. For an incorrectly
classified instance, ℓ𝑀𝐶𝐸(𝐶𝐵, 𝑐𝑡) is a positive value that allows to measure the extent of the
error, i.e., how much the true class is missed. As a consequence, the lower the ℓ𝑀𝐶𝐸(𝐶𝐵, 𝑐𝑡)
value, the better and, due to the - sign in the definition of 𝐶𝑀𝐶𝐸(𝐶𝐵, 𝒯 ), the greater the
𝐶𝑀𝐶𝐸(𝐶𝐵, 𝒯 ), the better, i.e., the more competent 𝐶𝐵 is w.r.t. 𝒯 .

Hinge loss competence. The hinge loss competence 𝐶ℎ𝑖𝑛𝑔𝑒 modifies the minimum classifi-
cation error loss by integrating an additional parameter, denoted by 𝜆, that corresponds to a
margin. The values of ℓ𝑀𝐶𝐸(𝐶𝐵, 𝑐𝑡) that are lower than −𝜆 (corresponding to the instances
with high prediction confidence) are not taken into account and not allowed to compensate for
the misclassified instances:

𝐶ℎ𝑖𝑛𝑔𝑒(𝐶𝐵, 𝒯 ) = − 1

|𝒯 |
∑︁
𝑐𝑡∈𝒯

ℓℎ𝑖𝑛𝑔𝑒(𝐶𝐵, 𝑐𝑡),

where ℓℎ𝑖𝑛𝑔𝑒(𝐶𝐵, 𝑐𝑡) = max(0, 𝜆+ ℓ𝑀𝐶𝐸(𝐶𝐵, 𝑐𝑡)).

Comparison between the competencemetrics. 𝐶𝑀𝐶𝐸 is close to a direct translation of the
notion of competence described in Subsec. 4.1. However, in 𝐶𝑀𝐶𝐸 , the negative contributions
to competence (incorrect predictions) and the positive ones (correct predictions) can cancel
each other out. In other words, a high increase of the confidence for correctly predicted class
can compensate for a lot of small misclassifications. This scaling issue between negative and
positive contributions to 𝐶𝑀𝐶𝐸 is avoided in 𝐶ℎ𝑖𝑛𝑔𝑒 as only the negative contributions (to a
margin) are accounted for.

4.3. Fine-Grained Competence: Case Level and Expertise Areas

This section proposes to breaks down the case base competence at a more refined level, consid-
ering the individual source and reference cases levels.

Proposed definitions. We first propose to define the competence of a source case 𝑐 =
(𝑠, 𝑟) ∈ 𝐶𝐵 w.r.t. a reference set 𝒯 as the loss of competence that would happen if this source
case was deleted from the case base:

𝐶(𝑐, 𝐶𝐵, 𝒯 ) = 𝐶(𝐶𝐵, 𝒯 )− 𝐶(𝐶𝐵 ∖ {𝑐}, 𝒯 ).

As for any competence measure, the greater, the better.
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Figure 1: Influence map of 2 source cases 𝑐1 and 𝑐2 (circled in red) of the Half Moon dataset (𝐶𝐵=colored
disks, 𝒯 =pale colored triangles): the background color shows, at each position 𝑥, 𝑦, the value of
𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒(𝑐1, (𝑥, 𝑦)), where green corresponds to a positive value and red to a negative one.

At an even finer level, we define the notion of competence locally as the contribution of a
source case 𝑐 = (𝑠, 𝑟) ∈ 𝐶𝐵 on each individual reference case 𝑐𝑡 ∈ 𝒯 . Indeed, the competence
𝐶(𝑐, 𝐶𝐵, 𝒯 ) over the reference set 𝒯 equals the sum over 𝒯 of the loss (e.g., ℓℎ𝑖𝑛𝑔𝑒 or ℓ𝑀𝐶𝐸):
the above-defined competence of a case 𝑐 ∈ 𝐶𝐵 w.r.t. 𝒯 can be expressed as

𝐶(𝑐, 𝐶𝐵, 𝒯 ) =
1

|𝒯 |
∑︁
𝑐𝑡∈𝒯

𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝐶𝐵(𝑐, 𝑐𝑡)

where 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝐶𝐵(𝑐, 𝑐𝑡) = ℓ(𝐶𝐵, 𝑐𝑡)− ℓ(𝐶𝐵 ∖ {𝑐}, 𝑐𝑡).

This notion of case influence entails the idea of locality: all source cases contribute to the
competence of the case base, but each source case may contribute differently on different regions
of space. This enables the identification of regions of expertise of a source case. Since the loss
distinguishes between correct and incorrect classification, case influence can also be used to
identify those regions where a source case can improve the performance from those where
performance is degraded.

Illustrative example. Figure 1 offers a visualization of the case competence and influence
considering two source cases, circled in red, of the Half Moon dataset (see Subsec. 5.1), and
the map of their influence values. The left figure shows the least competent source case
(𝐶(𝑐, 𝐶𝐵, 𝒯 ) = −4.680) which degrades the performance on many reference cases (dark red
regions) and contributes negatively to the overall competence. This case would be the first
one to be removed in a case deletion strategy. The right figure shows the most competent case
(𝐶(𝑐, 𝐶𝐵, 𝒯 ) = 4.020), which contributes positively to the competence of the case base: it
improves the performance of a large set of reference cases (green regions). Interestingly, this
case also harms the performance for some references of the opposing class.

Case deletion procedure. The proposed source case competence leads to the proposition of
a case deletion procedure, described by Algorithm 1: at each iteration, the source case 𝑐𝑤𝑜𝑟𝑠𝑒

that contributes less to the competence of the case base 𝐶𝐵 w.r.t. the reference set 𝒯 is deleted
from the case base.
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Algorithm 1 Case deletion procedure

Require: An initial case base 𝐶𝐵 and a reference set 𝒯
while |𝐶𝐵| > 0 do

𝑐𝑤𝑜𝑟𝑠𝑒 = argmin𝑐∈𝐶𝐵 𝐶(𝑐, 𝐶𝐵, 𝒯 )
𝐶𝐵 = 𝐶𝐵 ∖ {𝑐𝑤𝑜𝑟𝑠𝑒}

end while

5. Experiments

We investigate experimentally the properties of the proposed case deletion procedure and
competences definitions, in particular examining their correlation with the classification per-
formance of the CoAT prediction algorithm. We also provide a stability analysis, as well as a
qualitative analysis of the results.

5.1. Considered Artificial Datasets

The experiments are performed in a a binary classification setting with three synthetic 2D
datasets generated from 3 distributions coined Line, Ring, and Half Moon and respectively
illustrated in Fig. 2a, 2b, and 2c.

The Line data are drawn from a uniform distribution defined on [0, 2] × [0, 3]. They are
labeled according to the arbitrary chosen line 𝑓(𝑥) = −𝑥+2.5, and noise is added by randomly
switching the label, with a probability of 20%, for cases within a 0.3 distance to the boundary.

For the Ring data, two classes are defined a concentric rings of radii 25 and 50. For each
class, points are randomly sampled using polar coordinates, drawing the angle from a uniform
distribution on [0, 2𝜋] and radius from a normal distribution 𝒩 (𝜇 = 𝑟𝑐, 𝜎 = 10), where
𝑟𝑐 ∈ {25, 50} is the radius of the class. The theoretical decision boundary for the Ring data is
the circle of radius 32.5.

The Half Moon dataset is generated with “make_moons” function from the Scikit-
Learn library1 with a noise of 0.2. The distribution is composed of two halves of a cir-
cle, one of which is shifted laterally by the radius. Each half-circle corresponds to a
classhttps://www.overleaf.com/project/6450c7d0d4abf9ac2bc9f746.

In all three cases, 𝒮 = R2 and the associated similarity a decreasing function of the standard
Euclidean distance 𝜎𝒮(𝑥, 𝑦) = exp(−𝑑2(𝑥, 𝑦)); the outcome space is ℛ = {0, 1} equipped
with 𝜎ℛ(𝑟𝑥, 𝑟𝑦) = 1 if 𝑟𝑥 = 𝑟𝑦 and 0, otherwise. Note that the three data distributions are more
or less compatible with 𝜎𝒮 due to their geometry. In that regard, the limitations of 𝜎𝒮 help
understand the performance of our approach when the similarity is not as good as it could be.

5.2. Experimental Protocol

For each of the three considered data distribution, we generate 1000 samples that we split into
20 non-overlapping subsets of 50 cases, each one being balanced in terms of classes. We separate
them in 2 groups: 10 serve as initial case bases 𝐶𝐵1, . . . , 𝐶𝐵10 and the others as reference

1https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
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sets 𝒯1, . . . , 𝒯10. Fig. 2a, 2b, and 2c display the overall 1000 samples together with their label,
showing in light colors the reference sets.

For each pair (𝐶𝐵𝑖, 𝒯𝑗), we apply the proposed compression algorithm. After each removal
step, the classification results obtained by the CoAT algorithm applied with the current 𝐶𝐵 are
assessed by the macro F1 on all reference cases

⋃︀
𝑘=1..10 𝒯𝑘.

Fig. 2d, 2e and 2f show the evolution of this macro F1 criterion during the case dele-
tion procedure, comparing the two proposed competence measures 𝐶𝑀𝐶𝐸(𝑐, 𝐶𝐵, 𝒯 ) and
𝐶ℎ𝑖𝑛𝑔𝑒(𝑐, 𝐶𝐵, 𝒯 ); the shade corresponding to the 95% confidence interval over the 100 combi-
nations of initial case base and references. In Fig. 2g, 2h, and 2i, each line shows the results for
one of the 10 case bases and the shades show the 95% confidence interval over the 10 reference
sets. Reciprocally, in Fig. 2j, 2k, and 2l, each line corresponds to a reference set and the shades
correspond to the 95% confidence interval over the 10 initial case bases.

5.3. Results

We study the behavior of the case-based models resulting from compression by performing
both quantitative and qualitative analyses.

5.3.1. Competence Definitions and Correlation with Performance

In the second row of Fig. 2, we compare the evolution of the macro F1 when using either
𝐶𝑀𝐶𝐸 or 𝐶ℎ𝑖𝑛𝑔𝑒 for case competence in the compression process. With 𝐶𝑀𝐶𝐸 , F1 remains at
its maximum slightly longer, so a few more cases can be removed. However, with 𝐶𝑀𝐶𝐸 , F1
remains at its initial value throughout the process and does not reach as high values as with
𝐶ℎ𝑖𝑛𝑔𝑒. For instance, on Ring, F1 reaches a value close to 60% for 𝐶𝑀𝐶𝐸 and 85% for 𝐶ℎ𝑖𝑛𝑔𝑒.

Complementary experiments, whose curves are omitted for brevity, examine the evolution of
the case base competence during the compression process. They show that, as desired, the case
base competence remains constant or increases during compression when using 𝐶ℎ𝑖𝑛𝑔𝑒. On the
other hand, using 𝐶𝑀𝐶𝐸 causes an increasingly faster decrease of competence, making it a poor
choice for case base compression. Also, by comparing the decrease when using 𝐶𝑀𝐶𝐸 with F1,
which is almost constant, it becomes striking that𝐶𝑀𝐶𝐸 is not directly correlated with predictive
performance, and this is problematic in our vision of competence. As mentioned in Subsec. 4.2,
prediction successes and failures are considered at the same time in 𝐶𝑀𝐶𝐸 , but higher 𝐶𝑀𝐶𝐸

could be an expression of higher confidence in already well predicted cases, of fewer errors, or
of less confident errors. In that regard, 𝐶ℎ𝑖𝑛𝑔𝑒 is more suitable as a competence measure as it
measures how confident the model is in its errors, and thus higher 𝐶ℎ𝑖𝑛𝑔𝑒 corresponds to fewer
or less confident errors, which directly translates to higher performance.

The experiments described hereafter consider only 𝐶ℎ𝑖𝑛𝑔𝑒, as it is more interesting in terms
of performance, stability across datasets, and is a better fit for the notion of competence.

5.3.2. Competence of the Case and Impact on Performance

Looking at the F1 evolution (see Fig. 2g to 2l) shows that no matter the initial cases in the case
base or the reference cases used, the same trend of performance can be observed: (i) a raise, (ii)
a plateau, and finally (iii) a faster and faster decrease. As our algorithm removes the cases by

10
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(a) Line distribution (b) Ring distribution (c) Half Moon distribution

(d) 𝐶𝑀𝐶𝐸 &𝐶ℎ𝑖𝑛𝑔𝑒, Line (e) 𝐶𝑀𝐶𝐸 &𝐶ℎ𝑖𝑛𝑔𝑒, Ring (f) 𝐶𝑀𝐶𝐸 &𝐶ℎ𝑖𝑛𝑔𝑒, Half Moon

(g) Initial cases, Line (h) Initial cases, Ring (i) Initial cases, Half Moon

(j) Reference cases, Line (k) Reference cases, Ring (l) Reference cases, Half Moon

Figure 2: Evolution of the macro F1 (on all 500 reference cases) during the case deletion procedure,
for Line, Ring and Half Moon. The distribution of the 1000 cases used is displayed in first row. In the
second row, performance with 𝐶𝑀𝐶𝐸 is compared with 𝐶ℎ𝑖𝑛𝑔𝑒 (𝐶𝑀𝐶𝐸 &𝐶ℎ𝑖𝑛𝑔𝑒). The performance
with 𝐶ℎ𝑖𝑛𝑔𝑒 is also detailed when grouping by case base initialization (third row) and reference set
(fourth row).

order of increasing competence, it appears that (i) corresponds to incompetent cases, (ii) to cases
that are neither competent nor incompetent, and (iii) to competent cases. Going further, during
phase (i) removing cases improves the performance, meaning that the removed cases were
“polluting” the case base. In (ii), the removed cases neither harm not benefit the performance of
the case base, as such they can be considered redundant w.r.t. the remaining cases. The cases
that remain are the most competent and useful ones, and in (iii) they are removed by order of
increasing competence, leading to sharper and sharper drops in performance.

This behavior is similar to the footprint deletion procedure from Smyth and Keane [5], with
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the auxiliary, spanning, and support cases removed in (ii), and pivotal cases removed in (iii).
Compared to [5], our procedure is more powerful as it can handle case bases that do not properly
fit the distribution of the data, as harmful cases are removed in priority in (i).

As we observe a striking parallel between the performance change and the compression
step, it appears that 𝐶ℎ𝑖𝑛𝑔𝑒 suits the intuition of competence, since the step at which a case is
removed during compression is proportional to its competence. Furthermore, this general trend
provides empirical guarantees that the maximum performance is reached just before the first
significant decrease in performance, meaning we can stop the process as soon as we detect such
a decrease.

5.3.3. Robustness of the Compression

Robustness w.r.t. the initialization of the case base. Fig. 2g, 2h, and 2i show that the
initial cases in the case base change the initial performance and time needed to converge to the
general trend of performance. In extreme cases of poor initial performance, the convergence
might be delayed until after performance starts to decrease, as can be seen in Fig. 2i for the
lower of the two groups of case bases.

By analyzing the distribution of each set of initial cases (not shown here for brevity), we
observe that not having enough cases in a particular area of the distribution (i.e., having holes
in the case base in important places) causes the case base to have difficulties to reach the best
performance. We were able to confirm this effect by manually removing cases in parts of the
distribution, in experiments omitted here for brevity. Conversely, if we manually make one class
over-represented, the performance is not damaged as much, as the cases in the over-represented
class are redundant and are removed in the plateau (ii).

From these results, the initial cases harm the best performance only when the initial perfor-
mance is too poor (leading to converging too slowly to reach the best state) or when there are
no cases in an important area of the boundary.

Robustness w.r.t. the reference cases. The cases used to measure the competence can
have a critical impact on the best performance reached. If there is no major gap between the
distribution of references and the true distribution of the data, the maximal performance can
be harmed but is still in the same range as the other references, as can be seen with the cyan
references in Fig. 2g and 2h. However, the effect of the references becomes striking when we
manually create holes in the distribution of references, in experiments omitted from the article
for brevity. In that setting, the case base becomes biased towards the incorrect distribution of
the references.

5.3.4. Qualitative Analysis

Fig. 3 displays, for each dataset and for a single initialization and reference, 3 steps of the case
deletion procedure: the initial case base (first column), after 10 deletion steps (second column),
and after 30 deletion steps (third column). In each figure, the red and blue dots represent the
remaining source cases, and the crosses and the triangles represent the references (triangles
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Figure 3: Three steps (first column: initial step, middle column: after 10 deletions, third column: after
30 deletions) of the case deletion procedure, for different datasets (top row: Line, middle row: Ring,
bottom row: Half Moon). The case circled in red is the one that will be removed from the case base.

and crosses respectively mean correct and incorrect prediction). The least competent source
case 𝑐𝑤𝑜𝑟𝑠𝑒 that will be deleted is circled in red.

The colored map in the figure represents CoAT’s predictions for new cases across the space,
with the color matching the predicted class and the saturation corresponding the confidence
(i.e., the energy difference between the two outcomes, see Subsec. 4.1). In that manner, it is
possible to identify the decision boundary of the compressed case base. At the end of the process,
CoAT’s decision frontier meets the theoretical classification boundary of the distribution, even
for Half Moon, which as a relatively complex boundary. The decision frontier induced by the
compressed case base is thereby able to closely approximate the ideal classification boundary.

5.4. Discussion

The compression process using 𝐶ℎ𝑖𝑛𝑔𝑒 is able to reduce the number of cases in the case base
to 40% (Ring) or even 20% (Line and Half Moon) of its initial size, while strictly improving
performance. While our current experiments only cover binary classification, our approach
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is designed to handle any kind of nominal data in the outcome space. Further work on the
approach will include multi-class classification and real-world data.

The robustness experiments showed that the initial case base was not a major factor in the
peak performance, as long as there are enough cases in the important regions of the situation
space. However, it is important to have a proper set of reference cases, as the distribution
of the references is closely matched by the compressed case base. If the reference cases are
not representative of the true distribution of the data, then the compressed case base is not
guaranteed to match the true distribution. To summarize, it is useful to focus on the quality
of the reference (i.e., how representative of the actual distribution they are) and on having
sufficient initial cases for the case base, even if their quality is subpar, as long as they cover
enough of the distribution for the intended purpose of the model.

Additionally, we obtained empirical evidence of the benefits of 𝐶ℎ𝑖𝑛𝑔𝑒 over 𝐶𝑀𝐶𝐸 , and the
performance of the case base measured by 𝐶ℎ𝑖𝑛𝑔𝑒 correlates to CoAT’s prediction performance.
The question of whether this measure of competence is compatible with other CBR processes
than CoAT remains open, in particular since CoAT and our competence measure are based on
the same energy function. The ordering of cases—based on their competence—may change after
a case is removed, as our competence measure involves the rest of the case base. This might have
an effect on the compression process, but our energy-based approach to competence may offer
theoretical guaranties or bounds on those changes. If the competence of a case remains stable
when removing another case, we can speed up convergence by removing cases by batches.

6. Conclusion and Future Perspectives

This paper introduced an energy-based approach to measuring the competence of a case base
for machine learning tasks such as case prediction and classification. This competence approach
differs from prior approaches proposed in the literature as it relies on the optimization of a
global compatibility indicator between two similarity measures, one on the situation space and
the other on the outcome space.

We show empirically that this notion of competence is tightly related to performance for a
case-based classification task, in the sense that the competence of a source case is positively
correlated to its ability to reduce the energy of correct outcomes and to increase the energy
of incorrect outcomes. We analyze both quantitatively and qualitatively the behavior of this
competence-based approach on different datasets (with substantially different distributions) and
taking into account different classification frontiers and loss functions. Moreover, we analyze
its robustness with respect to different reference and initial cases.

These results suggest the strong potential of this energy-based framework for guiding case
base maintenance, providing an alternative to existing methods. One of the main differences
is that it employs a global approach by considering the competence of a case base as a whole,
rather than a local approach as it is often the case in the literature (where only nearest neighbors
are considered). The empirical and thorough comparison between the former and the latter will
constitute one of the topics to be investigated in a future contribution.
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