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Abstract. To predict and respond to famine and other forms of food
insecurity, different early warning systems are using remote analyses of
crop condition and agricultural production, using satellite-based infor-
mation. To improve these predictions, a reliable estimation of the cul-
tivated area at national scale must be carried out. In this study, we
developed a datamining methodology for extracting cultivated domain
patterns based on their temporal behavior as captured in time-series of
moderate resolution remote sensing MODIS images.
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1 Introduction

The northern fringe of sub-Saharan Africa is a region that is considered partic-
ularly vulnerable to climate variability and change, and food security remained
there a major challenge. To address this issue, major international research ef-
forts are being deployed, coordinated by the ongoing project AMMA (African
Monsoon Multidisciplinary Analyses). Its aim is to better understand the West
African Monsoon and its variability, and to improve the predictions of the im-
pacts of this variability on West African societies.

One of the preliminary stages necessary for analyzing such impacts on agri-
culture and food security is a reliable estimation of the cultivated domain at
national level, a scale compatible with climate change studies. For that pur-
pose, different early warning systems such as FEWS and JRC-MARS use global
land cover maps but they are generally focused on large ecosystems, and are not
suitable for fragmented and heterogeneous African landscapes. Recent moderate-
resolution sensors, such as MODIS/TERRA, with spatial resolutions as low as
250 m, offer new possibilities in the study of agricultural lands. With this increase
in spatial resolution, the detection of groups of fields can now be considered. The
low and medium spatial resolutions do not, by themselves, provide a completely
satisfactory representation of the landscape but are compensated for by a large
coverage area and by an excellent temporal resolution.

This brings us to the question whether moderate-resolution satellite data, in
combination with external data (fields surveys, climate etc.) can provide a cor-
rect assessment of the distribution of the cultivated domain at country level. It
is expected that more consistent information on vegetation would allow monitor-
ing Sahelian rural landscapes with better continuity, thereby providing relevant
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information for early warning systems.

In this study, we develop a datamining methodology to extract relevant se-
quential patterns to describe cultivated areas. These patterns are obtained from
the static description and the temporal behavior as captured in time-series of
moderate resolution remote sensing images. We applied this methodology in
Mali, a representative country of the Sahel Belt of Africa. Both the temporal
and spatial dimensions add substantial complexity to data mining tasks. A prior-
itization is needed to reduce the search space and to allow the relevant pattern
extraction. We thus adopt a two-step approach: (1) identification of relevant
descriptors per class (2) associated pattern mining from MODIS times series.

2 The Data Description

2.1 Study area

Mali is, after Senegal, the second westernmost country of West Africa around
Latitude 14N. It displays a South North climatic gradient that ranges from
subtropical to semi-arid, and which extends further north to arid and desertic.
As for other West African countries along the same latitudinal belt, food security
relies on an adequate supply of rainfall during monsoon season. This country
can therefore be considered representative of the Sudano-Sahelian zone, where a
strong dependence on rainfed agriculture implies vulnerability to major changes
due to climate and human activities, and hence require specific attention. A
particular attention was paid to 3 zones in Bani catchment, mainly located in
Southern Mali (Table 1).

Table 1. Main characteristics of the three studied sites

Site name (eco-climatic zone) Mean annual
rainfall

Main crops Natural vegetation type

Cinzana (Soudano-Sahelian) 600 mm Millet,
sorghum

High proportion of bare
soils and sparse vegeta-
tion

Koutiala (Soudano-Sahelian) 750 mm Cotton, mil-
let, sorghum

Large areas of semi-open
and closed natural vegeta-
tion

Sikasso (Soudanian) 1000 mm Maize, cot-
ton, fruit
crops

Dense natural vegetation
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2.2 Data

Field data Fields surveys were conducted in Mali during the 2009 and 2010
cropping seasons (from May to November) in order to characterize Soudano-
Sahelian rural landscapes. Three sites (Cinzana, Koutiala, Sikasso) were selected
to sample the main agro-climatic regions of Central and Southern Mali (Table
1). 980 GPS waypoints were registered, and farmers were interviewed. Each
waypoint was transformed into a polygon whose center has been affected a land
use.

crop

food producing crop cash crop

cotton eucalyptus

bare soil nat veg forest grassland

non crop

land cover⏉

rocky soil

Fig. 1. Crop hierarchy

External data Six static descriptors were also used to characterize the site
surveys:

– soil type
– distance to the village
– distance to the river
– rainfall
– ethnic group
– name of the village

Images data MODIS time series: The NASA Land Process Distributed Ac-
tive Archive Center (LP DAAC) is the repository for all MODIS data. Amongst
MODIS products, we selected the Vegetation Indices 16-Day L3 Global 250 m
SIN Grid temporal syntheses for our study. For Mali, a set of 12 MODIS 16-days
composite normalized difference vegetation index (NDVI) images (MOD13Q1/V05
product) at a resolution of 231.6 m were acquired for 2007 (we keep the best
quality composite image out of two for each month). The year 2007 was chosen
to overlap with the more recent high resolution data available. We assume that
the observed classes of land use remained globally unchanged from 2007 to 2009
(fields surveys in 2009). However, Malian farmers pratice crop rotation. It is the
practice of growing a series of dissimilar types of crops in the same area in se-
quential seasons for various benefits such as to avoid the build up of pathogens
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and pests that often occurs when one species is continuously cropped, improving
soil structure and fertility. Thus, we decided to only consider the two higher
levels of the crop hierarchy (Figure 1).

Remotely-sensed indices used

– Normalized Difference Vegetation Index: NDVI is one of the most
successful index to simply and quickly identify vegetated areas and their
“condition”, providing a crude estimate of vegetation health. It displays the
relationship between the quantity of chlorophyll in leaves with red and near
infrared wavelength, so that NDVI image is used to search vegetation as
estimating biomass, plant productivity, fractional vegetation cover [10].

NDV I =
NIR−RED
NIR+RED

where RED and NIR stand for the spectral reflectance measurements ac-
quired in the red and near-infrared regions, respectively. In general, NDVI
values range from -1.0 to 1.0, with negative values indicating clouds and wa-
ter, positive values near zero indicating bare soil, and higher positive values
of NDVI ranging from sparse vegetation (0.1 - 0.5) to dense green vegetation
(0.6 and above). Furthermore, different land covers exhibit distinctive sea-
sonal patterns of NDVI variation. Crops have generally a distinct growing
season and period of peak greenness, which allows the discrimination with
other types of land cover.

– Texture: Information content in a digital image is expressed by the inten-
sity of each pixel (i.e.,. tone or color) and by the spatial arrangement of
pixels (i.e.,. texture, shape, and context) in the image. Traditionally, tone
(i.e.,. spectral intensity) has been the primary focus for most image anal-
ysis and hence information extraction in remote-sensing studies. However,
texture analysis is examined as an important contributor to scene informa-
tion extraction. The majority of image classification procedures, particularly
in operational use, rely on spectral intensity characteristics alone and thus
are oblivious to the spatial information content of the image. Textural al-
gorithms, however, attempt to measure image texture by quantifying the
distinctive spatial and spectral relationships between neighboring pixels. In
response to the need for extracting information based on the spatial ar-
rangement of digital image data, numerous texture algorithms have been
developed. Statistical approaches, such as those developed by [4] make use
of gray-level probability density functions, which generally are computed as
the conditional joint probability of pairs of pixel gray levels in a local area of
the image. In this study, we used four Haralick textural indices [3] calculated
on the MODIS time series : variance, homogeneity, contrast and dissimilarity
on ENVI. The Haralick textural features describe the spatial distribution of
gray values and the frequency of one gray tone appearing with another gray
tone in a specified distance and at a specified angle. The generation of these
indices is based on different orientations of pixels pairs, with specific angle
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(horizontal, diagonal, vertical, co-diagonal) and distance, called patterns. We
determined empirically a size of pattern of 15 pixels for MODIS, which is
the smaller patch repeated in different direction and distance.

3 Motivating Example

In order to illustrate our approach, we consider the following example that will
be used throughout the paper as a running example. Let us consider a relational
table T in which NDV I values by field are stored. More precisely, we assume
that T is defined over six dimensions (or attributes) as shown in Table 2 and
where: D is the date of statements (considering two dates, denoted by 1 and
2), I is the field identifier (considering 4 different fields, denoted by F1,F2, F3
and F4), C is the crop type (considering two discretized values, denoted by FP
(food-producing) and NFP (non food-procucing)), S is the soil type (consider-
ing three different soil types, denoted by GS (gravelly soils), SL (sandy loam)
and CL (clay loam)), DV is the distance between the associated field and the
nearest village (considering two discretized values, denoted by near and far),
NDV I stands for the NDV I value associated to each field at each timestamp
(considering 4 abstract values n1, n2, n3 and n4). We consider five sets of dimen-
sions as follows: (i) the dimension D representing the date, (ii) the dimension
I representing the identifier, (iii) the dimensions S and DV , that we call static
dimensions or descriptors (values of these dimensions associated to a given field
do not evolve over time), (iv) the dimension NDV I, that we call dynamic dimen-
sion or indicators (values of these dimensions associated to a given field evolve
over time) and (v) the dimension C that we call the class. For instance, the first
tuple of T (Table 2) means that the field 1 is a food-producer crop composed by
CL, near to a village and that , at date 1, the NDVI value was n1. Observing
in great details the static attribute values per class, some comments should be
made. First, food-producing crops are always located near to the village whereas
the soil composition is changing. Similarly, non food-producing crops are always
cultivated on GS whereas the distance to the nearest village is changing. A first
interpretation to these comments is that the dimension DV appears to be de-
cisive to identify food-producing crops whereas the dimension S appears to be
decisive to identify non food-producing crops. Consequently, it is pertinent to
only consider decisive dimensions per crop to mine representative rules. Once
static dimensions have been filtered, the dynamic dimension (NDVI) is consid-
ered in order to mine sequential patterns characterizing crops. Let us suppose
that we look for sequences which are verified by all the crops in a given class
. Under this condition, the pattern 〈(near, n1)(near, n2)〉 (meaning that fields
located near to a village and where the NDVI statement are n1 at a certain date
and n2 after) characterizes the food-producing crops and the pattern 〈(GS, n3)〉
characterizes the non food-producing crops. It should be noted that represen-
tative rules per class can be composed by values of different dimensions. In the
rest of this paper, we describe the adopted methodology to determine the deci-
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sive attributes per class and how the table T is subdivided and mined to obtain
representative rules per class.

Table 2. Table T

D I C S D NDVI
(Date) (Id) (Crop) (Soil) (Distance to village) (NDVI value)

1 F1 FP CL near n1

1 F2 FP SL near n1

1 F3 NFP GS far n2

1 F4 NFP GS near n3

2 F1 FP CL near n2

2 F2 FP SL near n2

2 F3 NFP GS far n4

2 F4 NFP GS near n3

4 Preliminary Definitions

In this section, concepts and definitions concerning multidimensional sequential
patterns are presented and are inspired by the notations introduced in [9]. For
each table defined on the set of dimensions D, we consider a partition of D into
three sets: Dt for the temporal dimension, DA for the analysis dimensions and
DR for the reference dimension. Each tuple c = (d1, . . . , dn) can thus be denoted
c = (r, a, t) with r the restriction on DR, a the restriction on DA and t the
restriction on Dt .

Definition 1. (Multidimensional Item) A multidimensional item e defined on
DA = {Di1, . . . , Dim} is a tuple e = (di1, ..., dim) such that ∀k ∈ [1,m] , dik ∈
Dom(Dik).

Definition 2. (Multidimensional Sequence) A multidimensional sequence S de-
fined on DA = {Di1, . . . , Dim} is an ordered non empty list of multidimensional
items S = 〈e1, . . . , el〉 where ∀j ∈ [1, l], ej is a multidimensional item defined on
DA.

Considering our running example and that DA = {DV,NDV I}, (near, n1) is
a multidimensional item. 〈(near, n1)(near, n2)〉 is a multidimensional sequence
on DA.

Remark 1. In the original framework of sequential patterns [1], a sequence is
defined as an ordered non empty list of itemsets where an itemset is a non
empty set of item. Nevertheless, in the scope of this paper, we only consider
sequences of item since at each date, one and only one item can occur for each
field. For instance, only one NDVI statement is available per date and field.
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An identifier is said to support a sequence if a set of tuples containing the
itemsets satisfying the temporal constraints can be found.

Definition 3. An identifier r ∈ Dom(DR) supports a sequence S = 〈e1, . . . , el〉
if ∀j ∈ 1 . . . l, ∃dj ∈ Dom(Dt), ∃t = (r, ej , dj) ∈ T where d1 < d2 < . . . < dl.

Definition 4. Sequence Support Let DR be the reference dimension and T the
table. The support of a sequence S is:

support(S) =
|{r ∈ Dom(DR) s.t. r supports S}|

|Dom(DR)|

Definition 5. (Frequent Sequence) Let minSupp ∈ [0, 1] be the minimum user-
dened support value. A sequence S is said to be frequent if support(S) ≥ minSupp.

Considering the definitions above, an item can only be retrieved if there exists
a frequent tuple of values from domains of DA containing it. For instance, it can
occur that neither (CL, near) nor (SL, near) nor (GS, near) is frequent whereas
the value near is frequent. Thus, [9] introduces the joker value ∗. In this case,
we consider (∗, near) which is said to be jokerized.

Definition 6. Jokerized Item Let e = (d1, . . . , dm) a multidimensional item.
We denote by e[di/δ] the replacement in e of di by δ. e is said to be a jokerized
multidimensional item if: (i) ∀i ∈ [1,m] , di ∈ Dom(Di)∪{∗}, (ii) ∃i ∈ [1,m]such
that di 6= ∗ and (iii) ∀di = ∗,@δ ∈ Dom(Di) such that e[di/δ] is frequent.

A jokerized item contains at least one specified analysis dimension. It contains
a ∗ only if no specific value from the domain can be set. A jokerized sequence is
a sequence containing at least one jokerized item.

5 Method

5.1 Overview

In this paper, we aim at discovering representative rules in order to caracterize
crop classes and propose a four-step method to achieve this issue. It should be
noticed that the crop classes depends on the user-defined interest level of the
crop hierarchy displayed in Fig 1. For instance, assuming that the user would like
to discover representatives rules for classes in the second level of the hierarchy,
the set of classes will be {food-producing,non food-producing, other}. These four
steps are illustrated in Fig. 2 and are briefly presented here:

1. The raw database pretreatment. During this phase, two actions are
performed. First, since the raw database stores crops at the lowest level
of the hierarchy, these attributes values must be rewritten to match with
the user-defined interest level. Second, sequential pattern mining aims at
discovering frequent relations in a database but is not well adapted to mine
numerical attributs (e.g., distance to the village, NDVI value) due to the huge
definition domain of such attributes. Consequently, numerical attributes are
discretized to improve the sequential pattern mining phase.
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Fig. 2. Overall schema of the proposed methodology

2. The build of projected databases. Since we would like to obtain repre-
sentative rules per class, the pretreated database is projected on the different
class values.

3. The decisive attribute computation. During this step, a search is per-
formed on each projected databases in order to find and delete non-decisive
static attributes dimensions. Intuitively, a static attribute is said to be non-
decisive if none of its value allows to characterize the class. More precisely,
we guarantee that if it does not exist any value of a static attribute ap-
pearing in at least minSupp% in the projected database, the representative
rules associated to this class wont never contain specific values of this static
attribute. Consequently, it is useless to consider it in the rest of the process
and this attribute will be removed from the projected database

4. The sequential pattern mining. Once the projected databases were cleaned
up, the algorithm M2SP is applied on each databases. We obtain a set of
frequent pattern for each class.

Theses steps are now detailed in the following subsections.

5.2 The Database Pretreatment and Projections

The first performed treatment is the rewriting of the database in order to make
the crop attribute values and the user-defined interest level match. This is mo-
tivated by two reasons. First, as mentioned in Section 2, mining representative
rules for precise crop values is not consistent. As a consequence, crop attribute
values must be rewritten to, at least, the above level of granularity. Second,
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since the hierarchy is composed by two workable levels of granularity, it is inter-
esting to allow user to choose which level must be explored. Consequently, an
user-defined parameter, Level, is introduced to specify which level of granularity
to mine. Thus, rules representing different generalized classes can be compared.
Ann illustration of this database rewriting is displayed in Table 2 where crop
attribute values have been already generalized to the second level of granularity
(i.e., Dom(Crop) = {FP,NFP}).

A second pretreatment is the discretization of numerical attributes. This
discretization is motivated by the use of the sequential pattern technique to mine
representative rules. Indeed, sequential pattern algorithms aim at discovering
frequent relation among the fields belonging to the same class. When dealing
with numerical attributes, two values can be considered as different items even if
they are very close. For instance, let us consider that the distance to the nearest
village is 200 meters for field 1 and is 205 meters for the field 2. These two
distances woud have been considered as different items by the M2SP algorithm
without discretization even if they are semantically closed. In our application
case, numerous attributes are numerical. Thus, this discretization is necessary.
Numerous discretization techniques can be found in the literature [2]. Section 6
details the adopted technique per numerical attribute.

Once the database was pretreated, projection per crop attribute values is
performed. Indeed, this is motivated by the fact that we would like to discover
representative rules per class. Thus, an intuitive way to achieve this goal is to
subdivide the pretreated table into smaller ones associated to each class. Regard-
ing our running example, Tables 3 and 4 display the result of this projection.

Table 3. TFP , the FP projected table

D I S D NDVI
(Date) (Id) (Soil) (Distance to village) (NDVI indice)

1 F1 CL near n1

1 F2 SL near n1

2 F1 CL near n2

2 F2 SL near n2

5.3 Dimensionality Reduction

Once the projected databases were built, a search is performed on the static at-
tributes of each database in order to identify useless static attributes. Intuitively,
if values of a static attribute are very changing, this attribute is not really char-
acteristic to this class. So, it can be deleted from the projected class. The main
advantage of such a strategy is to reduce the search space during the sequential
pattern mining phase. Indeed, it is empirically shown in [9] that the number
of dimensions exponentially impacts on both the memory consumption and the
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Table 4. TNFP , the NFP projected table

D I S D NDVI
(Date) (Id) (Soil) (Distance to village) (NDVI indice)

1 F3 GS far n2

1 F4 GS near n3

2 F3 GS far n4

2 F4 GS near n3

extraction time. Whereas traditional applications domains often deal with few
analysis dimensions, this point can be very problematic in our context since the
number of both static and dynamic dimensions can be high. For instance, exper-
iment results presented in Section 6 concern at most 12 dimensions. Traditional
multidimensional sequential pattern approaches cannot efficiently deal with such
a number of analysis dimensions. Moreover, independently to performance con-
siderations it is important to notice that the higher the number of dimensions,
the higher the number of extracted patterns. Since these extracted patterns will
be exploited by experts, reducing the dimensionality without loss of expressivity
is very relevant to improve the result analysis phase.

To perform such a dimensionality reduction, we proceed as follows. Let
minSupp be the user-defined parameter used during the sequential pattern min-
ing phase, Ti be a projected database and Dj ∈ Ti be one the static dimension
in Ti. It can be easily proved that if it does not exist any value of Dj appearing
in at least minSupp × |Ti| tuples in Ti (where |Ti| is the size of Ti), it cannot
exist any sequential pattern extracted from Ti where a value of Dj appears. If
so, the dimension Dj is considered as useless and is thus deleted from Ti. A
direct corollary of this propriety is that if an attribute is retained, it will exist
at least one sequential pattern containing a value of Dj . To illustrate this af-
firmation, let us consider, TFP , the projected database presented Table 3 and
minSupp = 1. The two static attributes are D and S. Regarding the D at-
tribute, all the tuples share the same value (near). This attribute is considered
as useful for the next step and is thus retained. Let us now consider the S at-
tribute. Here, no value satisfies the minSupp condition. As a consequence, S
is deleted from this table. To attest the consequence of such a strategy, let us
consider, SPFP , the set of the multidimensional sequential patterns extracted
from TFP where minSupp = 1, Dt = D, DR = I and DA = {C, S,NDV I} (i.e.,
all the static and dynamic attributes are considered). Under these conditions,
SPFP = {〈(∗, near, n1)〉, 〈(∗, near, n1)(∗, near, n2)〉}. It is readily noticeable that
D occurs in SPFP but not S.

It is interesting to observe that the set of useful attributes per class can
be different. As a consequence, independently to the values of these attributes,
attributes themselves can be representative to one class. For instance, performing
the above described dimensionality reduction technique on TNFP (see Table 4),
S but not D will be retained this time.
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5.4 Mining Representative Rules

Once useless attributes have been deleted, the M2SP algorithm is applied on
each projected and cleaned database Ti such that minSupp is the same as de-
fined during the previous step, Dt = D, DR = I and DA is composed by the
the retained static attributes and the dynamic attributes. We note SPTi the
set of sequential patterns extracted from Ti. For instance considering TFP and
minSupp = 1, 〈(near, n1)(near, n2)〉 is a frequent sequence meaning that NDVI
values equals n1 and then n2 is a frequent behaviour for fields cultivating food-
producing crops located near to a village.

6 Experiment Study

In this section, we present experiments to evaluate the feasability and efficiency
of our approach. Throughout the experiments, we answer the following questions
inherent to efficiency issues: Does the dimensionality reduction technique allow
to delete useless static attributes without loss of information? Does the mining
process allow to discover discriminating patterns per class ? Does the texture
data allow a better discriminating pattern extraction than only considering NDVI
values? The experiments were performed on a Intel(R) Xeon(R) CPU E5450 @
3.00GHz with 2GB of main memory, running Ubuntu 9.04. The methods were
written in Java 1.6. We first describe the adopted protocol and then present and
discuss our results.

6.1 Protocol

The method was evaluated on the dataset described in Section 2. This dataset
contains 980 distinct fields and a MODIS time serie of length 12 is associated
to each field. The 7 static dimensions and the 5 dynamic dimensions were the
same as described in Section 2. As mentioned in Section 5, a discretization step
is necessary to efficiently mine frequent patterns. The adopted discretization
methods are as follows:

– EQUI-WIDTH technique (the generated intervals have the same width) was
used for distance village and distance river attributes

– EQUI-DEPTH technique (the generated intervals have the same size) was
used for the other numerical attributes

In this experiment study, two sets of classes were considered. The first set
of classes, denoted by B aims at discovering patterns allowing the distinction
between food-producing crops (FP), non food-producing crops (NFP) and non
crops (OTHER). The second set of classes, denoted by C, aims at discovering
patterns allowing the distinction of more general classes : crops (Cr) and non
crops (NCr).

In order to evaluate the impact of texture data in discriminating pattern
extraction, we consider a first configuration, denoted by Default, where all the
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dynamic attributes were used. On the contrary, the configuration denoted by
NDV I is only composed by NDVI values as dynamic attribute.

Three experiment results are presented and discussed in this section:

1. A first experiment was performed to evaluate the number of retained static
attributes according to two minSupp values

2. A second experiment was performed to evaluate the number of discriminating
patterns. Here, discriminating means that a pattern appears in one class but
not in the others.

3. Finally, the last experiment was performed to observe the discriminating
dimension values according the two above described configurations.

6.2 Results and Discussion

Figure 3 displays the the retained attributes according to the two sets of classes
and two minSupp values. First of all, it can be noticed that the minSupp thresh-
old value has an obvious impact on this attribute selection. Indeed, considering
minSupp = 0.5, more than half of the attributes were deleted. Moreover, it is
interesting to observe that the retained attributes per class and set of classes are
roughly identical.

Fig. 3. Retained static attributes under default configuration (left: minSupp = 0.5 /
right: minSupp = 0.3)
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Figure 4 displays the proportion of discriminating patterns per class with
minSupp = 0.5 and the NDVI configuration. Indeed, even if a pattern was ex-
tracted from one class, it is not enough to consider it as discriminating (i.e., the
same pattern can appear in different classes) Thus, queries was formulated to
search which patterns appear in one class and not in the others. Two conclusions
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can be drawn from this figure. First, considering the set of classes B, most of
the extracted patterns are discriminating (even if the FP class obtains a worse
score). Second, finding discriminating patterns on the set of classes C looks more
difficult.

Fig. 4. Proportion of discriminating patterns per class with minSupp = 0.5 and the
NDVI configuration

Level Class #disc. patterns #patterns Proportion

B
FP 6 9 66.67%

NFP 12 12 100%
OTHER 13 16 81.25%

C
Cr 3 10 30%

NCr 4 11 36.36%

Figure 5 displays some representative discriminating attribute values accord-
ing the two configurations and the two sets of classes. An attribute value is said
to be discriminating if it does not appear in any pattern of the other classes.
This experiment aims at observing the impact of texture dynamic values on
the extracted patterns. Some conclusions can be drawn. First of all, the class
OTHER does not contain discriminating value independently to the configura-
tion. Second, a very interesting and promising result is that the default configu-
ration contains much more discriminating values than the NDVI configuration.
Moreover, these discriminating values concern the texture attributes. This result
reinforces our idea that texture attributes are very useful in automatic landscape
recognition.

To conclude this experiment study, we have empirically shown that (1) the
dimensionality reduction method allows to reduce the search space by deleting
useless attributes. (2) Most of the extracted patterns are discriminating. (3) It
appears to be more difficult to distinguish between Cr and NCr classes than
FP , NFP and OTHER classes with our approach. And (4), most of the dis-
criminating attribute values concern the texture attributes.

7 Related Work

Applications of sequential pattern mining methods to Satellite Image Time Series
(SITS) include [7, 5, 8, 6]. Interest in these methods to study change detection on
satellital images come from the fact that they are (i) multi-temporal, (ii) robust
to noise, (iii) able to handle large volumes of data, and (iv) capable of capturing
local evolutions without the need for prior clustering.

In [5], sequential pattern mining is applied to study change in land cover
over a 10 months period on a rural area of east Romania. Pattern extraction is
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Fig. 5. Some discriminating dimension values per class with minSupp = 0.3 (top:
default config. / bottom: NDVI config.)

Level Class Attribute Value

B

FP
modis homogeneity 1km 0.48-0.52

modis variance 1km 3.27-4.34
modis dissimilarity 1km 1.36-1.51

NFP
distance village 3150-6205

modis contrast 1km 5.35-6.54
modis dissimilarity 1km 1.51-1.66

OTHER NONE

C
Cr

modis dissimilarity 1km 1.21-1.36
modis variance 1km 3.27-4.34

NCr modis variance 1km 10.28-14.15

Level Class Attribute Value

B

FP NONE

NFP
rainfall 800

distance village 3149.3-6205.6
OTHER NONE

C
Cr NONE

NCr distance village 3149.3-6205.6

used to group together SPOT pixels that share the same spectral evolution over
time. The SITS data is thus processed at the pixel level, by taking the values of
the pixels on each of the SPOT bands. A method is proposed to visualize the
extracted patterns on a single image.

[8] presents a similar approach but pixel values are computed from four SPOT
bands instead of a single band. The SITS period coverage is also much longer: a
20-year time image series is mined in order to study urban growth in the south
west of France. A visualization technique is proposed to locate areas of evolution.
Results show that mining all pixels of the images leads to the generation of a
huge number of non-evolution patterns. Additional strategies are then required
to filter out all non informative patterns.

To the best of our knowledge, sequential pattern mining has only been applied
at the pixel level on high resolution images without taking into account external
data or texture information in the mining process. In this paper, we have shown
that sequential pattern mining can help to characterize cultivated areas from
moderate resolution remote sensing images MODIS.

8 Conclusion

The objective of this study was to propose an original method to extract sets
of relevant sequential patterns from MODIS times series that can be used for
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cultivated area mapping. We have developed a data mining method based on
two steps and applied it in Mali. Experiment study conducted on this data set
reinforce our intuition about the importance of texture attributes to improve the
automatic landscape recognition. Our future work will be aimed at validating the
extracted patterns per class. After which, we can go a step further to build the
classifier based on these patterns and evaluate the predictions of the cultivated
area at national scale.
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