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Abstract. Analogical transfer addresses classification and regression
tasks, performing a plausible inference according to which similar in-
stances are likely to be associated with similar labels. This paper pro-
poses a detailed study of the ordinal implementation of this principle
by the so-called CoAT algorithm, that is based on a data set complex-
ity measure quantifying the number of inversions observed when ranking
the data according to their instance or label similarities. At a theoretical
level, it establishes an upper bound of the complexity measure, provid-
ing a reference value to which the observed one can be compared. At an
algorithmic level, it proposes an optimization that allows decreasing the
computational complexity by one order of magnitude. At an experimen-
tal level, it studies the correlation of the complexity measure with the
accuracy of the conducted label inference, as well as with the classifica-
tion task difficulty, as captured by the class overlapping degree.

Keywords: computational analogy, analogical transfer, similarity-induced
ranking, data set complexity

1 Introduction

Analogical reasoning [7] has been recognized by psychologists to be at the core
of human thoughts [6]; computational analogy proposes, among others, to trans-
pose its principles to artificial intelligence and machine learning models [3, 15].
In particular, computational analogical transfer addresses prediction tasks, such
as classification and regression, and implements a special type of plausible in-
ference according to which similar instances are likely to be associated with
similar labels. Since the pioneering logical formulation of analogical transfer [4],
many formulations of this principle have been proposed: a first type of approach
consists in looking for local alignment of the instance and the labels similari-
ties [2, 8, 13, 14]. A second one expresses the similarity principle as a negative
constraint that excludes labels that are not similar enough to the ones of the
similar instances [10]. A third approach, related to the second one, consists in
measuring the extent to which a potential label is supported as compared to the
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other available data [5, 9]. Other works study how to take into account domain
knowledge in the inference [11, 12].

This paper focuses on another approach, implemented in the Complexity-
based Analogical Transfer algorithm CoAT [1], presented in more details in Sec-
tion 2. CoAT relies on an ordinal formalization of the above mentioned principle
according to which the ranking induced by the similarity measure applied to
the data instances should be identical to the ranking induced by the similarity
measure applied to their associated labels. As a consequence, the predicted label
must be such that it does not entail ranking inversions. More precisely, the CoAT

algorithm relies on the definition of a complexity measure that counts the num-
ber of so-called inversions, i.e. case triples violating the ordering requirement.

This paper proposes an extended study of the CoAT method, from three
complementary points of view, namely theoretically, computationally and ex-
perimentally: it first establishes an upper bound of the complexity measure,
providing a reference value to assess the relevance of the analogical assumption
for the considered data set and similarity measures. It then addresses algorith-
mic concerns about the CoAT method and shows that it can be optimized to
reduce its computational complexity to a tractable value. Finally, it presents an
experimental study of the complexity measure, in particular regarding its corre-
lation with the accuracy of the conducted label inference, its correlation with the
prediction task difficulty for classification tasks (measured as the class overlap).
Experimental results about its computational cost are also presented.

The paper is structured as follows: Section 2 recalls the principle of the CoAT

algorithm, Section 3 presents the established upper bound on the complexity
measure, successively for regression and classification tasks. Section 4 discusses
the algorithmic optimization that allows reducing the computational cost of the
CoAT approach for inference. Section 5 describes the conducted experimental
study. Finally, Section 6 concludes the paper.

2 Reminder on Complexity-based Analogy

This section recaps the principles of the Complexity-based Analogical Transfer
algorithm CoAT [1] studied in this paper. After introducing the notations used
throughout the paper, it recalls the definition of the complexity measure on
which CoAT relies and then describes the inference algorithm itself.

2.1 Notations

Throughout the paper, D denotes a case base containing n instances, or cases, ci,
i = 1..n, defined as ordered pairs (si, ri): si denotes the situation, i.e. a feature-
based description of the considered instance, or problem, and ri its associated
label, or outcome or solution, either a numerical value, in the case of regression
tasks, or a categorical value, in the case of classification tasks. Throughout the
paper, the situation and outcome that constitute a case are identified by their
identical index.
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In addition, σS denotes a similarity measure applied to the situations, for
instance derived from the Euclidean distance in case all features are numerical.
σR denotes a similarity measure applied to the outcomes. Formally, a similarity
measure applied to elements from a domain X is defined as a function σ : X ×
X → R+ that satisfies a reflexivity constraint: there exists a value M ∈ R+ such
that ∀(x, y) ∈ X , σ(x, y) ≤ σ(x, x) = M and σ(x, x) = σ(y, y), i.e. the similarity
of any object to itself is maximal. In addition, a similarity measure is most of
the time supposed to be symmetrical.

2.2 Ordinal Analogical Principle: Complexity Definition

As mentioned in the introduction, the CoAT algorithm [1] relies on an ordinal
understanding of the basic analogical principle, according to which similar in-
stances are to be associated with similar labels: the complexity measure at the
core of the algorithm quantifies the extent to which the ordering induced by the
situation similarity measure σS is similar to the ordering induced by the outcome
similarity measure σR.

More formally, the following qualitative continuity constraint is tested on
each triple of cases (c0, c, c

′), with c0 = (s0, r0), c = (s, r), and c′ = (s′, r′):

if σS(s0, s) ≥ σS(s0, s
′), then σR(r0, r) ≥ σR(r0, r

′)

This constraint expresses that each time a situation s0 is more similar to a
situation s than to a situation s′, this order is preserved on their associated
outcomes. Any violation of the constraint is called an inversion of similarity,
defined as a Boolean value:

inv(c0, c, c
′) = (σS(s0, s) ≥ σS(s0, s

′)) ∧ (σR(r0, r) < σR(r0, r
′))

It leads to the following definition of inversion set for a given case c with respect
to a case base D and two similarity measures σS and σR (omitted in the notation
to ease it) using the same function name, with a different arity:

inv(c) = {(ci, cj) ∈ D ×D | inv(c, ci, cj) holds } (1)

Finally, the complexity measure for a case base D and two similarity mea-
sures σS and σR counts the number of such inversions observed in the case base:

Γ (D,σS , σR) =
∑
c∈D
|inv(c)| (2)

2.3 Ordinal Analogical Inference Algorithm

The complexity measure Γ defined in Eq. (2) can then be used either to select
appropriate similarity measures, as the ordered pair (σS , σR) among a list of
candidates that minimizes Γ , or to perform inference for a new situation [1]. In
the latter case, for a new situation s, the transfer inference consists in predicting
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Algorithm 1 Complexity-based Analogical Transfer CoAT [1]

inputs: s (new situation), D (case base), R (set of candidate outcomes),
σS , σR (situation and outcome similarity measures)
output: predicted outcome rs for the new situation s
minΓ = Γ (D ∪ {(s, r0)}, σS , σR) for a specific arbitrary r0 ∈ R
for r ∈ R do
D′ = D ∪ {(s, r)}
Γ ′ = computeGamma(D′, σS , σR) using Alg. 2
if Γ ′ < minΓ then
minΓ = Γ ′

rs = r
end if

end for
return rs

Algorithm 2 Complexity computation : computeGamma [1]

inputs: D (case base), σS , σR (situation and outcome similarity measures)
output: value of Γ (D,σS , σR)
Γ = 0
for c0 ∈ D do

for c ∈ D do
for c′ ∈ D do

if inv(c0, c, c
′) then

Γ = Γ + 1
end if

end for
end for

end for
return Γ

the outcome rs that minimizes Γ applied to the considered data set enriched
with the additional case (s, rs):

rs = arg min
r∈R

Γ (D ∪ {(s, r)}, σS , σR)

where R denotes a set of candidate outcomes. R is e.g. defined as the set of pos-
sible classes in case of classification tasks or as an interval of possible numerical
values for regression tasks.

The CoAT inference algorithm [1] reproduced in Algorithm 1 then consists in
testing all possible values r for the outcome and outputting the one that leads
to the minimal complexity when the considered data set is completed with the
candidate case (s, r).
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3 Theoretical Property of the Complexity Measure:
Upper Bound

This section proposes a theoretical study of the complexity measure introduced
in [1] and recalled in the previous section, establishing the value of its upper
bound for a given case base and given similarity measures. Such a bound pro-
vides a reference value that defines a quality scale for the observed complexity
value. Indeed, the CoAT algorithm relies on comparisons of candidate complexity
values and selects the smallest one. The same principle is applied when the com-
plexity measure is used to select appropriate similarity measures, as the ones
that minimize Γ . However, such comparative approaches do not give indication
about the quality of these selections, i.e. whether these best choices are actually
relevant ones. Establishing a complexity upper bound provides a reference value,
corresponding to the worst case, to define a quality scale.

This section establishes the values of this bound, first in the general case,
then focusing on the case of binary classification. Indeed, for the latter, a tighter
bound can be provided: the worst case established in general appears to be too
pessimistic in the case of binary classification.

3.1 General Case

The following theorem states the value of the complexity upper bound and shows
it can be considered as tight, stating the case in which the bound can be attained.

Theorem 1. For a case base D and two similarity measures σS and σR, the

maximum value that the complexity Γ (D,σS , σR) can take is Γmax = n2(n−1)
2

where n = |D|.
There exists a pair (σS , σR) such that this bound can be attained if all outcome

values observed in D are distinct.

To demonstrate this theorem, we first show that this value is an upper bound,
and exhibit the configuration in which it can be attained.

Value of the Upper Bound Establishing the value of the upper bound relies
on the observation that, for any case c, among the two ordered pairs (ci, cj)
and (cj , ci), at most one belongs to the set of inversions inv(c). Indeed, assuming
without loss of generality that (ci, cj) ∈ inv(c), then by definition σS(s, si) ≥
σS(s, sj) and σR(r, ri) < σR(r, rj). Having (cj , ci) ∈ inv(c) would require that
σR(r, rj) < σR(r, ri), which contradicts this hypothesis.

In addition, ci 6= cj since an equality would lead to σR(r, ri) = σR(r, rj),
which is not compatible with the inversion definition

As a consequence, the cardinality of inv(c) is bounded by the number of com-
binations of 2 elements of the case base that are distinct, i.e. n(n−1)/2. Summing
over the n possible values for c leads to the expected inequality Γ ≤ n2(n− 1)/2.
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Tightness of the Upper Bound The bound can be shown to be tight by
exhibiting similarity measures σS and σR for which it is attained: in the case
where all outcome values observed in D are distinct, which can for instance occur
in the case of regression tasks, consider

– σS(si, sj) = 1 for all pairs of situations si and sj
– σR(ri, rj) = e−f(i,j) where f is a pairing function, i.e., is such that the values

it assigns for the pairs (i, j) are all distinct. An example of such function is
the Cantor pairing function f(i, j) = 1

2 (i+ j)(i+ j + 1) + j.

Then for any pair of distinct cases (ci, cj), the fact that all values assigned by σR
are distinct entails that exactly one of the two possible ordered pairs belongs
to inv(c) for any c, the one with the minimal index min(i, j). Indeed, considering
without loss of generality that i < j, then it holds that σS(s, si) = σS(s, sj) = 1
and σR(r, ri) < σR(r, rj) due to the above definitions of σS and σR. The total

number of inversions for a given c thus equals n(n−1)
2 and the upper bound is

attained.
It can be observed that this bound remains a pessimistic one, insofar as

these similarity measures are of course not relevant ones (indeed, considering all
situations are fully similar does not constitute a relevant choice). However, it
allows to set a scale and a reference value to compare the complexity values of
relevant similarity measures.

3.2 Binary Classification Case

In the case of binary classification, by definition, the outcomes r can only take
two values. The bound established in Theorem 1 can thus not be attained (except
in the extreme case where D contains 2 instances, one of each class), and is not
tight enough. This section establishes a tighter bound:

Theorem 2. For a case base D in which all outcomes values observed in D
can only take two distinct values, for two similarity measures σS and σR, the

maximum value that the complexity Γ (D,σS , σR) can take is Γcls = n3

4 , where
n = |D|.

There exists a pair (σS , σR) such that this bound can be attained if the two
classes have the same number of elements.

Value of the Upper Bound Let n0 and n1 denote the number of cases in the
case base associated with each of the two outcomes respectively.

For any triple (c, ci, cj), the inequality σR(r, ri) < σR(r, rj) can hold only if
r 6= ri and r = rj because of the reflexivity property of a similarity measure, as
recalled in Section 2.1. As a consequence, the maximal number of such triples

is n0n1, which in turn is bounded by n2

2 . Indeed, n0n1 = n0(n− n0) which is a

quadratic function of n0 whose maximum is reached for n0 = n
2 and equals n2

4 .
Summing over all n situations c leads to the expected result.
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Tightness of the Upper Bound In the case where σS is the same as in the pre-
vious section, i.e. σS(s, s′) = 1 for all pairs of situations and where σR(r, r′) = 1
if r = r′ and 0 otherwise, the bound is attained if the two classes have the same
number of elements, n0 = n1 = n

2 .
Indeed, for a given case c, an inversion is observed for any ordered pair (ci, cj)

where cj has the same class as c and ci the opposite class: σS(c, ci) = σS(c, cj) = 1

and σR(r, ri) = 0 < σS(r, rj) = 1. There are n0n1 = n2

4 such triples for a given c

and thus n3

4 inversions altogether.
Note that the order of magnitude of this bound is the same as the one in the

general case, cubic in the number of cases, but it is halved (also note they are
equal in the extreme case where n = 2). As previously, it is a pessimistic bound
as it relies on non-relevant similarity measures.

4 Algorithmic Optimisation

This section studies the CoAT algorithm from an algorithmic point of view and
shows that its computational complexity can be decreased drastically. It first
presents the justification, and then describes the proposed optimized version of
the CoAT algorithm.

4.1 Principle

The computational complexity of the CoAT algorithm, as recalled from [1] in Al-
gorithm 1, is high, as it computes the complexity measure of the candidate modi-
fied data set D′ for each candidate outcome value: the complexity is O(n3 × |R|),
i.e. not tractable for real data sets. Indeed, computing the complexity of a data
set is a cubic function of its number of cases as it considers all triples (see the
triple loop in Algorithm 2).

However, one can decrease the complexity by one order of magnitude when
observing that actually not all triples are needed to identify the optimal r value
minimizing Γ (D′, σS , σR): indeed all triples that do not involve the new situation
are not needed, as they are common to all candidate modified data sets D′.
Formally,

Γ (D ∪ {(s, r)}, σS , σR) =

n∑
i=1

|inv(ci)|+ |inv((s, r))|

= Γ (D,σS , σR) +
n∑

i=1

|{cj ∈ D|σS(si, s) ≥ σS(si, sj) ∧ σR(si, r) < σR(si, rj)}|

+|inv((s, r))|

As the term Γ (D,σS , σR) does not depend on the candidate outcome r, its
computation is not needed: denoting

∆Γ (s, r,D, σS , σR) = Γ (D ∪ {(s, r)}, σS , σR)− Γ (D,σS , σR)
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Algorithm 3 Optimized variant of the CoAT algorithm

inputs: s (new situation), D (case base), R (set of candidate outcomes),
σS , σR (situation and outcome similarity measures)
output: predicted outcome rs for the new situation s
min∆Γ = n2(n− 1)/2 with n = |D|
for r ∈ R do
∆Γ ′ = computeDeltaGamma(D, s, r, σS , σR) using Alg. 4
if ∆Γ ′ < min∆Γ then
min∆Γ = ∆Γ ′

rs = r
end if

end for
return rs

it holds that

arg min
r∈R

Γ (D ∪ {(s, r)}, σS , σR) = arg min
r∈R

∆Γ (s, r,D, σS , σR)

Now the computation of ∆Γ (s, r,D, σS , σR) is quadratic in the number of cases
contained in the considered case base D, as both its terms are. Indeed, the first
term of the sum defining ∆Γ (s, r,D, σS , σR) is a sum over all n cases contained
in D, which altogether has a quadratic complexity in n. The second term needs
to go through all pairs of cases in D to compute |inv((s, r))|, which also has a
quadratic complexity.

4.2 Proposed Optimized Algorithm

Algorithm 3 shows how the principle discussed in the previous subsection can be
implemented. First the minimal value of the candidate min∆Γ can be initialized
to the upper bound established in Section 3. The algorithm then goes through
all possible candidate outcome values r ∈ R, but each value is used to compute
∆Γ instead of Γ .

This computation is performed in Algorithm 4, which relies on a double
loop, where the computation of Γ performed in Algorithm 2 relies on a triple
loop. Indeed, it only considers the triples that contain the considered candidate
case c0 = (s, r), testing all three possibilities, depending on whether c0 is in first,
second or third position in the triple.

This procedure can be further optimized if the best observed value formin∆Γ
is given as additional argument to the function computeDeltaGamma described
in Algorithm 4. Indeed, it is then possible to take advantage of an early discard
principle, i.e. to exit the double loop on c and c′ as soon as the current ∆Γ value
becomes greater than the already observed best value stored in this additional
parameter min∆Γ . This principle can be especially useful when CoAT is applied
to regression tasks, i.e. when the number of candidate outcome values is high.
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Algorithm 4 Complexity increase computation : computeDeltaGamma

inputs: D (case base), s additional situation, r associated candidate outcome,
σS , σR (situation and outcome similarity measures)
output: value of ∆Γ (s, r, σS , σR) with respect to D
c0 = (s, r)
∆Γ = 0
for c ∈ D do

for c′ ∈ D do
if inv(c0, c, c

′) then
∆Γ = ∆Γ + 1

end if
if inv(c, c0, c

′) then
∆Γ = ∆Γ + 1

end if
if inv(c, c′, c0) then
∆Γ = ∆Γ + 1

end if
end for

end for
return ∆Γ

A further direction for computational optimization, left for future works, is
to define a relevant order, possibly based on a heuristic criterion, for testing the
candidate outcome values: if the optimal one is tested first, all other candidates
can be discarded early without fully computing their associated ∆Γ values.

5 Experimental Study

The experimental study of the CoAT algorithm and its optimization described in
this section rely on their Python implementation available on github3.

The experimental study consists in three parts: the first one, described in
Section 5.1, illustrates the decrease of computational complexity offered by the
algorithmic optimization proposed in Section 4; the second one (Sec. 5.2) shows
there is a correlation between the data set complexity and the accuracy of the
inferred label; the third one shows there is a correlation between the data set
complexity and the classification task difficulty, as captured by the class over-
lapping degrees (Sec. 5.3).

5.1 Computational Cost

This section describes the experimental study of the computational cost of the
CoAT algorithm and its optimization proposed in Section 4. Note that the latter
is correct in the sense that its output is always identical to that of CoAT.

3 https://github.com/fadibadra/coat iccbr
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Fig. 1. CoAT prediction time for its non-optimized and optimized versions, according
to the size of the case base.

Experimental Protocol The experiment is conducted on case bases of increas-
ing sizes obtained as random subsamples of the UCI Balance Scale dataset4 that
defines a 3-class classification task. For each case base, the prediction time of
both the non-optimized and the optimized versions of the CoAT algorithm is mea-
sured on 10 test instances. The similarity measure σS is defined as a decreasing
function of the Euclidean distance, and the similarity measure σR is the class
membership similarity: for two classes ri and rj , σR(ri, rj) = 1 if ri = rj , and 0
otherwise.

Results Figure 1 shows the average prediction time of the CoAT algorithm as
a function of the size of the case base: the red triangles correspond to the non-
optimized version of CoAT, the blue dots to the optimized version. The latter
clearly show the decrease in the computational time.

A polynomial regression shows that the computing time of non-optimized
version of CoAT on a case base of size n can be approximated by the function
f(n) = 1.25 10−7 n3 + 1.62 10−5 n2 + 5.84 10−4 n (red line on the figure), with a
root mean square error of 0.3; the computing time of optimized version of CoAT
can be approximated by the function f(n) = 6.17 10−6 n2 + 4.42 10−4 n (blue
line on the figure), with a root mean square error of 0.04. . These results are
consistent with the theoretical analysis of their respective computational costs
(see Section 4).

4 https://archive.ics.uci.edu/ml/datasets/balance+scale
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5.2 Correlation between Case Base Complexity and Performance

This experiment shows that there is a correlation between the value of the com-
plexity measure and the performance of the CoAT prediction algorithm.

Experimental Protocol The experiment is conducted on 200 instances ex-
tracted from the Balance Scale data set. As the instances of these data sets are
described only by d numeric features, each situation can be represented by a
vector of Rd. Let x,y ∈ Rd be two such vectors. The performance of the CoAT

algorithm is measured for each dataset by generating 100 different classification
tasks {(D,σi, σR)}1≤i≤100, each of which is obtained by keeping D and σR fixed,
and choosing for σS a decreasing function of a randomly weighted Euclidean dis-
tance. More precisely, a set of random linear maps {Li : Rd −→ Rd}1≤i≤100 are
generated, and for each map Li, σi is defined as a decreasing function of the
Euclidean distance computed in the Li’s embedding space:

σi(x,y) = e−di(x,y) with di(x,y) = ‖Lix− Liy‖2 =
√

(x− y)TLT
i Li(x− y)

The performance is also measured on the task (D,σE , σR), in which
σE(x,y) = e−‖x−y‖2 is a decreasing function of the Euclidean distance, which
amounts to taking as linear map the identity matrix. The similarity measure σR
is the class membership similarity. For each task, the performance is measured
by the prediction accuracy, with 10-fold cross validation.

Results Fig. 2 shows for each classification task the average accuracy and stan-
dard deviation of the CoAT algorithm according to the dataset complexity. The
blue points correspond to the randomly generated σi similarity measures. The
red point gives the results for the σE similarity measure based on the stan-
dard Euclidean distance. The green line shows the result of a linear regression
on the data. The Pearson’s coefficient is −0.97. On these datasets, the results
clearly show a correlation between the dataset complexity and the performance
of the CoAT algorithm. The dataset complexity values range between 6.10% and
15.58% of the upper bound Γmax = 3, 980, 000. The complexity upper bound
thus provides a reference value, that can be used to define a quality scale for the
similarity measure σS .

5.3 Correlation between Complexity and Task Difficulty

This experiment shows the correlation between the data set complexity and the
classification task difficulty, as captured by the class overlapping degree.

Experimental Protocol The experiment is conducted on a set of 2D synthetic
data sets, whose instances are equally split into two classes (blue and orange).
A set of classification tasks {(Di, σS , σR)}1≤i≤500 is generated, in which both
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Fig. 2. Relation between CoAT performance (accuracy) and dataset complexity on the
Balance Scale data set.

the size |Di| = 100 of the case bases and the two similarity measures σS and σR
are fixed, but the overlapping degree of the two classes vary. Random samples
are drawn for each class from a multivariate normal distribution centered on
the point (−10, 0) for the blue class and (10, 0) for the orange class, and the
covariance matrix of each normal distribution for the data set Di is the identity
matrix multiplied by the scale factor scale = i. This parameter thus controls the
overlapping degree of the two classes The similarity measure σS is a decreasing
function of the Euclidean distance, and the similarity measure σR is the class
membership similarity. The data set complexity Γ (Di, σS , σR) is computed for
each classification task (Di, σS , σR).

Results Figure 3 shows the data distribution and ratios Γ (Di, σS , σR)/Γmax

obtained for different data sets Di. When the value of the scale parameter is
very small, the two classes are well separated, but as its value increases, the two
classes start to overlap. When the two classes are well separated, no instance is
more similar to an instance of a different class than it is to an instance of the
same class, hence, Γ = 0. When the instances of the two classes get closer to each
other, or overlap, some class similarities happen to be lower than some intra-class
similarities, leading to a non-zero data set complexity Γ . Note however that the
data set complexity Γ does not exactly measure the overlapping degree of the
two classes, since it can be non-zero when the two class are close to one another,
but non overlapping.
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Fig. 3. Data distribution and ratio Γ/Γmax for different synthetic data sets.
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Fig. 4. Relation between data set complexity and classification task difficulty.

As shown on Figure 4, the more the two classes overlap, the higher the data
set complexity. The ratio Γ (Di, σS , σR)/Γmax thus provides a scale on which to
estimate the difficulty of the task, as captured by the overlapping degree scale

of the two classes on the data set Di. This experiments also illustrates that Γmax

is not a tight bound: even for highly overlapping classes, the complexity value is
still lower that 40% of Γmax.

6 Conclusion and Future Works

This paper proposes an extended study of the CoAT algorithm that provides an
ordinal implementation of the analogical transfer principle for classification and
regression tasks. From a theoretical point of view, the paper establishes an upper
bound of the complexity measure CoAT relies on. From an algorithmic point of
view, an efficient optimization of the CoAT algorithm is proposed, that allows
decreasing its computational cost by one order of magnitude: the optimized
variant has a quadratic complexity, equivalent to that of any relational learning
method. This property is illustrated experimentally. The paper also provides an
experimental characterization of the complexity measure, regarding its relation
to the inference performance and to the inference difficulty. When D and σR
are fixed, the complexity measure is an intrinsic indicator of the quality of the
similarity measure σS . When σS and σR are fixed, the complexity measure is an
indicator of the inference difficulty, as captured by D’s class overlapping degree.

The results obtained in this study provide additional arguments regarding the
relevance of the ordinal approach to analogical transfer and motivations for fur-
ther developing this principle of plausible inference. Future directions of research
in particular include working on tighter bounds of the complexity measure, e.g.
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focusing on more realistic (and thus less pessimistic) similarity measures and on
the case of non binary classification. From an algorithmic point of view, future
works will aim at proposing methods, possibly heuristics, to optimize the order
in which the candidate outcomes are tested: as mentioned earlier, if the opti-
mal value is considered first, other candidates can be discarded early, further
decreasing the computational cost.
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