

Systematic Review

Diagnostic Accuracy of Touchscreen-Based Tests for Mild Cognitive Disorders: A Systematic Review and Meta-Analysis

Nathavy Um Din ¹, Florian Maronnat ², Bruno Oquendo ³, Sylvie Pariel ³, Carmelo Lafuente-Lafuente ^{3,4,5}, Fadi Badra ¹ and Joël Belmin ^{1,3,4,*}

¹ Laboratoire d’Informatique Médicale et d’Ingénierie des Connaissances en e-Santé (LIMICS), Université Sorbonne Paris-Nord, 75005 Paris, France; nathavy.umdin@gmail.com (N.U.D.); badra@sorbonne-paris-nord.fr (F.B.)

² Centre Hospitalo-Universitaire de Brest, Université de Bretagne Occidentale, 29200 Brest, France; florian.maronnat@chu-brest.fr

³ Hôpital Charles Foix, 7 avenue de la République, 94200 Ivry sur Seine, France; bruno.oquendo@aphp.fr (B.O.); sylvie.pariel@aphp.fr (S.P.); carmelo.lafuente@aphp.fr (C.L.-L.)

⁴ Faculté de Santé, Sorbonne Université, 91-105 Boulevard de l’Hôpital, 75013 Paris, France

⁵ Clinical Epidemiology and Ageing (CEpiA) Team, Université Paris Est-Créteil, INSERM, IRMB, 94010 Créteil, France

* Correspondence: j.belmin@aphp.fr

Abstract

Background/Objectives: Mild neurocognitive disorder (mNCD) is a state of vulnerability, in which individuals exhibit cognitive deficits identified by cognitive testing, which do not interfere with their ability to independently perform in daily activities. New touchscreen tools had to be designed for cognitive assessment and had to be at an advanced stage of development but their clinical relevance is still unclear. We aimed to identify digital tools used in the diagnosis of mNCD and assess the diagnostic performance of these tools.

Methods: In a systematic review, we searched 4 databases for articles (PubMed, Embase, Web of science, IEEE Xplore). From 6516 studies retrieved, we included 50 articles in the review in which a touchscreen tool was used to assess cognitive function in older adults. Study quality was assessed using the QUADAS-II scale. Data from 34 articles were appropriate for meta-analysis and were analyzed using the bivariate random-effects method (STATA software version 19). **Results:** The 50 articles in the review totaled 5974 participants and the 34 in the meta-analysis, 4500 participants. Pooled sensitivity and specificity were 0.81 (95%CI: 0.78 to 0.84) and 0.83 (95%CI: 0.79 to 0.86), respectively. High heterogeneity among the studies led us to examine test performance across key characteristics in a subgroup analysis. Tests that are short and self-administered on a touchscreen tablet perform as well as longer tests administered by an assessor or on a fixed device. **Conclusions:** Cognitive testing with a touchscreen tablet is appropriate for screening for mNCD. Further studies are needed to determine their clinical utility in screening for mNCD in primary care settings and referral to specialized care. This research received no external funding and is registered with PROSPERO under the number CRD42022358725.

Keywords: older adults; mild neurocognitive disorder; mild cognitive disorder; touchscreen; diagnosis; digital tools

1. Introduction

Mild neurocognitive disorder (mNCD) is a condition in which people experience cognitive difficulties and dysfunction which do not interfere with their ability to indepen-

Academic Editor: Silvia Giovannini

Received: 31 July 2025

Revised: 4 September 2025

Accepted: 10 September 2025

Published: 18 September 2025

Citation: Um Din, N.; Maronnat, F.; Oquendo, B.; Pariel, S.; Lafuente-Lafuente, C.; Badra, F.; Belmin, J. Diagnostic Accuracy of Touchscreen-Based Tests for Mild Cognitive Disorders: A Systematic Review and Meta-Analysis. *Diagnostics* **2025**, *15*, 2383. <https://doi.org/10.3390/diagnostics15182383>

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license

(<https://creativecommons.org/licenses/by/4.0/>).

dently perform in daily activities. mNCD may be secondary to neurocognitive diseases like Alzheimer's disease, Parkinson's disease, vascular dementia, or others. This condition offers a window of opportunity for cognitive stimulation, treatment of symptoms, implementation of compensatory strategies and introduction of healthier lifestyle habits (diet, exercise, etc.) that may delay the onset of a major neurocognitive disorder [1]. Early diagnosis of these conditions is recommended [2], first and foremost for the personal management of the person and their family, but also to enable rapid management by specialized professionals. However, diagnosing mNCD is challenging because coping mechanisms, types of cognitive deficits, and levels of cognitive reserve vary greatly from one individual to another, resulting in considerable variation in patients' experiences and symptoms and making it difficult to accurately diagnose this condition [2]. The mNCD and its diagnostic criteria were defined by the DSM-5, and these criteria are very close to those for mild cognitive impairment (MCI), a clinical condition very similar to mNCD, which was widely used before the emergence of mNCD [3]. Early diagnosis can also support clinical research and provide a better understanding of the mechanisms of disease progression or enable participation in clinical trials. The purpose of early diagnosis of mNCD is to slow the progression towards major NCD. Although there is no curative treatment at present, there are numerous strategies that can be implemented to prevent the onset of a major NCD, which is not without consequences for the family and caregivers, with the attendant loss of autonomy for the patient [4,5].

The diagnosis of mNCD relies on medical and neuropsychological evaluation performed in memory centers by a specialized team. Diagnostic criteria have evolved, from mild cognitive impairment (MCI), initially including only memory complaints, to mNCD defined by DSM-5 criteria that now encompasses broader cognitive complaints [3,6]. In both definitions, the person exhibits cognitive deficit identified by cognitive tests and retains autonomy in their daily life. The diagnostic process is long and tedious, often with long waiting times before the first appointment, resulting in a loss of opportunity for the patient. mNCD is insidious, and those affected do not always seek medical attention. The general practitioner (GP) is in the front line when it comes to detecting mNCD and referring to specialized centers [7]. It is therefore important to provide accessible and easy-to-use tools for primary care. Detection is not easy for primary care physicians, since no clearly defined strategy exists to identify people at risk and refer them appropriately to a memory center. The most widely used conventional tests are the Mini Mental State Examination (MMSE) [8] and the Montreal Cognitive Assessment (MoCA) [9]. Both are effective in screening for major neurocognitive disorders [10], but they require training and time and are rarely used by general practitioners. In a systematic review, Chun [11] analyzed the screening tools available for MCI and found that the three most frequently used were the MoCA, the MMSE and the Clock Draw Test (CDT). According to their evaluation criteria, the Six Item Cognitive Impairment Test (6 CIT), the MoCA (with thresholds of $\leq 24/22/19/15.5$) and the MMSE (with a threshold of ≤ 26) as well as the Hong Kong Brief Cognitive Test (HKBC) were the most effective. However, the authors highlighted the lack of evaluation of these new cognitive tools, with threshold values determined according to the populations and environments in which they are used. The performance of the MMSE and MoCA was compared in the meta-analysis by Pinto [10] and their accuracy in identifying mNCDs was found to be 0.780 (95% CI 0.740–0.820) and 0.883 (95% CI 0.855–0.912), respectively. Both tests have been regularly criticized for their threshold values. Thus, there is still progress to be made in identifying patients with mNCD in primary care [2,10].

Tests are progressively digitized to improve objectivity and speed, with the possibility of automated scoring, which would reduce test-taking time and make them more accessible

in primary care for GPs [5,12]. In addition, digital tools make it possible to record more detailed results, such as reaction times or pressure on the screen, which are not accessible to a human assessor. Furthermore, touchscreens are more accessible and intuitive thanks to their direct input, compared to keyboard and mouse use [6,13]. In previous work, we showed good detection of major neurocognitive disorders with touchscreens, which is encouraging for primary care [14].

In the present review and meta-analysis, we aimed to investigate the use of touchscreens for screening for mild cognitive disorders comprising mNCD and MCI, in older adults. We also sought to analyze the performance of these tests in relation to the reference diagnosis.

2. Materials and Methods

The protocol was registered with the International Prospective Register of Systematic Review (PROSPERO CRD42022358725), and the report follows the PRISMA-DTA guidelines [15] (see checklist in Supplementary Materials).

2.1. Search Strategy

We searched four databases (Medline, Embase, Web of Science and IEEE Xplore) and included all articles published up to 31 December 2024. The last extraction was in April 2025. We used terms relating to screening or diagnosis, older adults, neurocognitive diseases, touchscreen device (see Table A1 in Appendix A). The search terms were broadened to dementia, but we selected only articles dealing with early stages, taking into account the continuum of neurocognitive diseases from MCI/mNCD to dementia. The search strategies were prepared with the help of an experienced librarian. The reference lists of all articles were manually searched to retrieve relevant studies.

2.2. Article Selection

We included articles whose participants: (i) were over 60 years of age, (ii) were classified according to the presence of mNCD/MCI determined using a conventional assessment of cognition, based on reference diagnostic criteria (Petersen, National Institute on Aging-Alzheimer's Association; National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer's disease and related Disorders Association; Alzheimer's Disease in neuroimaging initiative, etc.), and (iii) were examined using a novel tool using a digital touchscreen device (tactile tablet, touchscreen computer or smartphone). We did not include studies in which the results for mNCD and M-NCD were mixed and could not be analyzed separately.

2.3. Data Extraction

The first two authors independently selected relevant articles from the results of the queries in PubMed, Embase, Web of Science and IEEE Xplore. Any discrepancies were discussed among evaluators until consensus was reached. A third author was consulted in case of disagreement. Reference lists were managed using Zotero® (version 6.0.30) and Excel 2013®. Duplicates were individually checked by the two authors. Each investigator evaluated the study selection criteria independently. Reasons for exclusion were noted in Zotero and differences were resolved by discussion.

Descriptive data for each article were collected by two authors and included the descriptive characteristics of the studies, namely: country, year of publication, period of inclusion of participants, mean age of population, reference diagnostic criteria, neuropsychological tests for reference diagnosis. We also recorded the characteristics of the touchscreen test, namely: name of the new test, mode of administration (self-administered or interviewer-administered), cognitive functions assessed, duration of the new test. Sensi-

tivity, specificity and contingency tables were also included for performance analysis in the meta-analysis. If data were missing or unclear to both investigators, they were recorded as “not specified” (NS) in the table. When the contingency table was not included in the original article, we contacted the authors to obtain it, and in the absence of a reply, we calculated the number of true positives, false positives, true negatives and false negatives with sensitivity and specificity from available data.

2.4. Quality Assessment

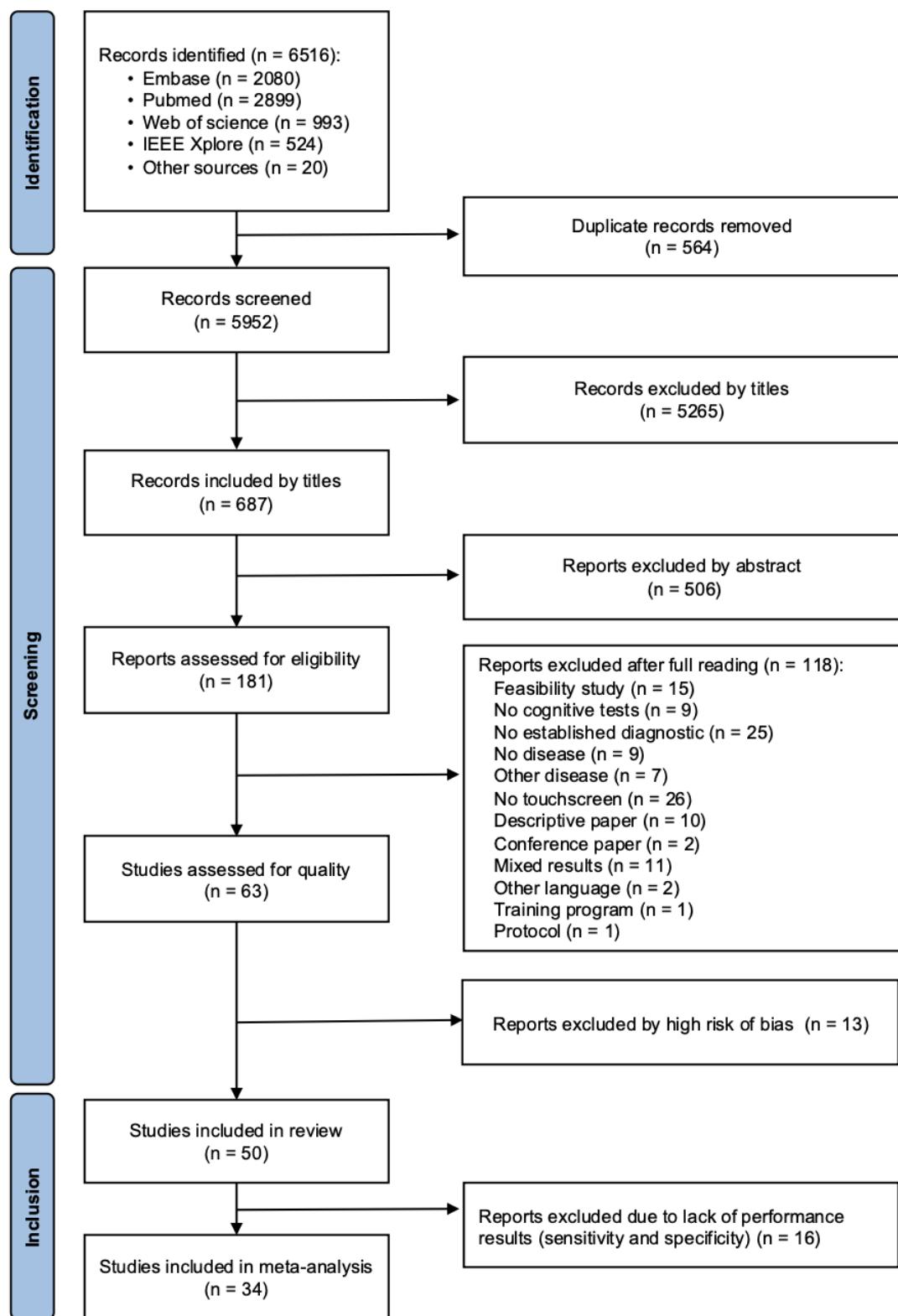
The quality of the included articles was assessed by two authors (NUD, FM) using the Quality Assessment of Diagnostic Accuracy Studies 2 instrument (QUADAS-2) [16] which measures the risk of bias and applicability of diagnostic accuracy studies. It comprises four key domains: patient selection, index test, reference standard, flow and timing. Each domain is considered for its risk of bias and applicability, and judged as high, low or unclear.

There are no official or validated decision rules for determining whether a study is of good or poor quality. We chose to exclude articles that were not of sufficiently high quality, and for this purpose, we defined our own decision rule, namely exclusion of studies with: 2 high risks of bias; or 2 high applicability concerns; or 3 risks of unclear bias; or 2 unclear applicability concerns; or 1 unclear applicability concern and 1 high applicability concern.

2.5. Meta-Analysis

We sought to complement the information about the performance of the tools tested. To this end, we collected information on true positives, false positives, true negatives and false negatives. If the information did not appear in an article, we contacted the corresponding author to obtain it.

Meta-analysis was performed with the METADTA program [17] in STATA software (version 19), which uses the bivariate random-effects method. Inter-study heterogeneity was assessed by the I^2 coefficient. We performed subgroup analyses according to the type of touchscreen used (touchscreen computer or touchscreen tablet), ease of transport (fixed or mobile device), type of questionnaire administration (rater-administered or self-administered), and test duration (brief test lasting less than 10 min, and longer test lasting more than 10 min).


3. Results

3.1. Studies Included

The database query yielded 6516 articles. After removal of duplicates and exclusions, 181 articles remained to be evaluated for eligibility. After the QUADAS-2 assessment, we finally included 50 studies in the review and 34 articles in the meta-analysis (Figure 1).

3.2. Study Characteristics

We included 50 articles in the systematic review. The characteristics of the included studies are presented in Appendix A. The results are presented in 2 tables according to the digital device used, namely studies using a tactile tablet (Table A2), and studies using a computer touchscreen (Table A3). Articles were published between 2005 [18] and 2024 [19] and were performed in 17 countries located in Europe, Asia, North America and South America.

Figure 1. Flow chart of the studies included.

3.2.1. Participants and Settings

The studies involved 5974 participants (3368 women and 2255 men) (4 studies did not mention the participants' sex). The number of participants by study varied from 12 [20] to 524 [21] with an average of 119. Mean age of participants was 72 years, and ranged from 53 to 81 years [22,23]. The recruitment was performed in memory centers (n = 27), in the

community ($n = 8$), in both memory centers and the community ($n = 3$), hospitals ($n = 14$), daycare centers ($n = 3$), health institutions ($n = 5$), memory clinic and research registry ($n = 2$), memory clinic, research registry and community ($n = 3$), hospital, agencies or community advertisements ($n = 2$), hospital, retirement home and community ($n = 1$), nursing home and association ($n = 1$), GP offices and community ($n = 1$), and from a demographic surveillance record ($n = 1$). Three studies did not specify their recruitment methods.

3.2.2. Reference Diagnosis

The reference diagnosis of mNCD/MCI was determined by specialized professionals using reference criteria and tests or parts of tests validated and accepted by the scientific community and are detailed in Appendix A (Tables A2 and A3). The reference diagnosis was considered as that established by a team of specialists in their own clinic, using official criteria. The studies used diagnostic criteria specific to their usual practice: Petersen's criteria ($n = 24$), the National Institute on Aging and Alzheimer's Association (NIA-AA) criteria ($n = 5$), the National Institute of Neurological and Communicative Disorders and Stroke and Alzheimer's Disease and Related Disorders Association (NINCDS/ADRDA) criteria ($n = 4$), Jak's criteria ($n = 1$), the National Alzheimer's Coordinating Center (NACC) criteria ($n = 1$), the American Academy of Neurology (AAN) criteria ($n = 1$), the DSM 5 criteria ($n = 1$), ADI criteria ($n = 1$), NIA-AA and DSM-5 criteria ($n = 1$), Alzheimer's Disease Neuroimaging Initiative (ADNI) criteria ($n = 1$), Alzheimer's Disease Research Centers (ADRC) criteria ($n = 1$), and international working group criteria ($n = 1$). Eight studies did not specify diagnostic criteria but reported that a diagnosis was made following a comprehensive medical and neuropsychological evaluation. A sensitivity analysis was carried out to compare the 24 studies using Petersen's criteria for MCI with the others, and we found no difference between them (see Figure A1 in Appendix A).

3.2.3. Touchscreen Test Procedures

A phase of learning and familiarization with the digital tool was mentioned in 16 studies and was not specified in the others.

Digital test times ranged from 2 min [24] to 2.5 h [25], 13 studies did not specify the duration and one study did not record the test duration [26]. The time needed to complete the tests was less than 5 min in 8 studies, between 10 and 15 min for 7 studies, between 15 and 30 min for 12 studies, between 30 and 60 min for 6 studies and more than an hour in 3 studies.

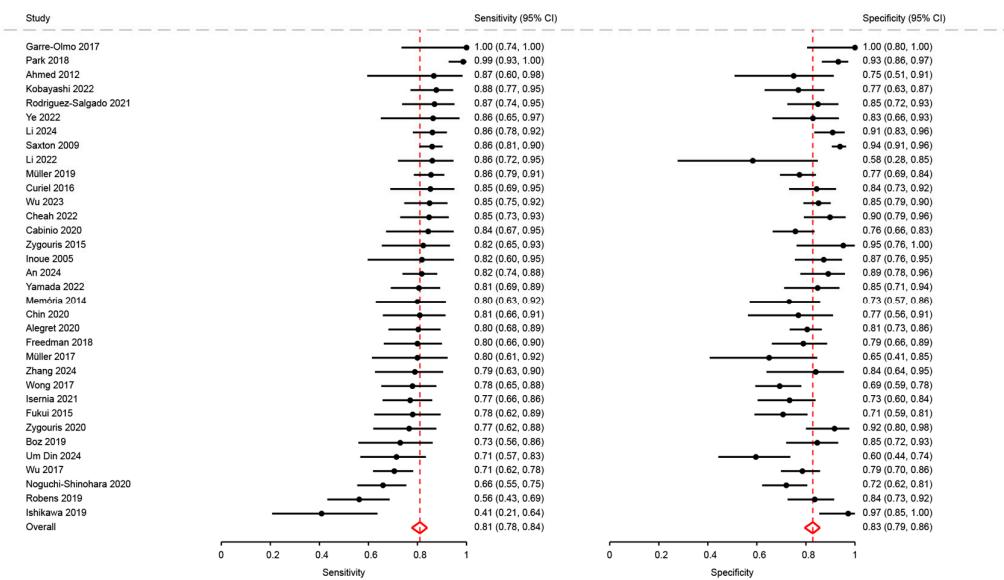
Thirty-one studies used a self-administered assessment (62%), 13 were assessor-administered (26%) and 6 studies (12%) did not report this information. The professionals involved were health practitioners or researchers trained in the assessments required.

The studies used tactile tablets ($n = 34$) and touchscreen computers ($n = 16$).

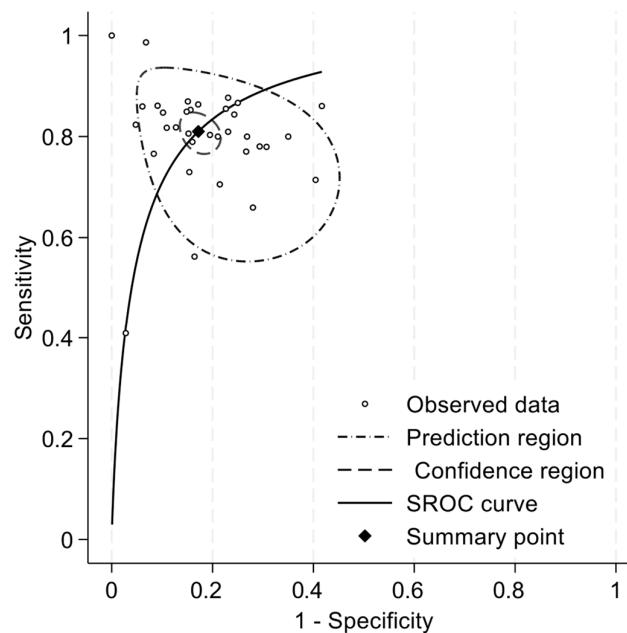
Forty of these devices were mobile (80%) versus 6 fixed (12%), while 4 studies did not specify the characteristics of their tool (8%).

3.2.4. Performance Results

Thirty-four studies measured the performance of their digital tests by calculating the sensitivity and specificity of their conclusion compared to the reference diagnosis. Sensitivity ranged from 0.41 (95%CI: 0.21 to 0.64) to 1.00 (95%CI: 0.74 to 1.00) [27,28]. Specificity ranged from 0.56 (95%CI: 0.28 to 0.85) to 1.00 (95%CI: 0.80 to 1.00) [26,28].


3.3. Quality Assessment

Overall, the quality of the studies assessed by QUADAS-2 was quite good [18–79] (Table A4 in Appendix A). We excluded 13 studies based on our decision rule.


3.4. Meta-Analysis

3.4.1. Main Results

We included 34 articles in the meta-analysis, totaling 4500 participants. Pooled sensitivity and specificity were 0.81 (95%CI: 0.78 to 0.84) and 0.83 (95%CI: 0.79 to 0.86), respectively (Figure 2). The positive likelihood ratio (LR+) was 4.71 (95%CI: 3.88 to 5.73), the negative likelihood ratio (LR-) was 0.23 (95%CI: 0.19 to 0.27), and the diagnostic odds ratio (DOR) was 20.55 (95%CI: 14.66 to 28.80). The summary ROC curve indicated a high overall discriminative performance of the tests, with a summary point near the upper-left corner of the ROC space and reasonably narrow confidence region (Figure 3). I² coefficient was 56.2, indicating that the studies were quite heterogenous.

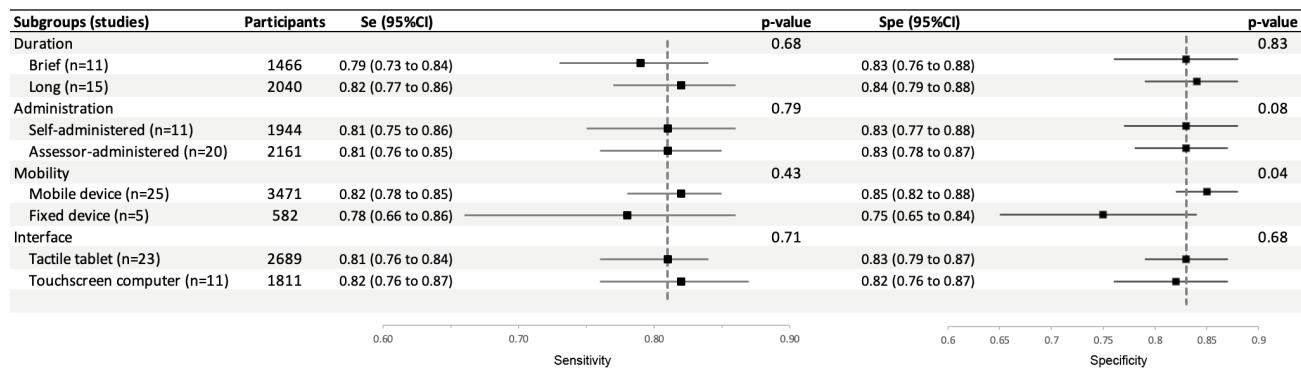

Figure 2. Analysis of sensitivity and specificity for the diagnosis of mild cognitive disorders [18,21,23,26–29,31,32,34–38,41,43,46–48,50,51,53,54,62–66,68,69,72,74–76].

Figure 3. Summary ROC curve of sensitivity and specificity for the diagnosis of mild cognitive disorders.

3.4.2. Subgroup Analysis

We analyzed the performance of the tests according to their procedures and device characteristics (duration, type of administration, type of touchscreen and mobility of the device) using the chi-2 test. Pooled sensitivity and specificity of these subgroups are presented in Figure 4 and the corresponding forest plots with the individual studies are shown in Appendix A (Figures A2–A5) and sections below.

Figure 4. Subgroup analysis of pooled sensitivity and specificity of touchscreen cognitive tests for the diagnosis of mild cognitive disorders.

Duration: Brief Test vs. Longer Test

Sensitivity and specificity in studies using brief tests (0.79; 95%CI: 0.73 to 0.84 and 0.83; 95%CI: 0.76 to 0.88, respectively) were not significantly different from those of studies using longer tests (0.82; 95%CI: 0.77 to 0.86, $p = 0.68$, and 0.84; 95%CI: 0.79 to 0.88, $p = 0.83$) (Figure A2).

Type of Administration: Self or Assessor Administered

Sensitivity and specificity in studies using assessor-administered tests (0.81; 95%CI: 0.76 to 0.85 and 0.83; 95%CI: 0.78 to 0.87, respectively) were not significantly different compared to those using self-administered tests (0.81; 95%CI: 0.75 to 0.86, $p = 0.79$, and 0.83; 95%CI: 0.77 to 0.88, $p = 0.08$) (Figure A3).

Mobility: Fixed or Mobile Device

Sensitivity in studies using a mobile device were not significantly different from that of studies using a fixed device (0.82; 95%CI: 0.78 to 0.85 and 0.78; 95%CI: 0.66 to 0.86, $p = 0.43$). Conversely, specificity in studies using a mobile device was significantly different higher than in studies using a fixed device (0.85; 95%CI: 0.82 to 0.88 and 0.75; 95%CI: 0.65 to 0.84, $p = 0.04$) (Figure A4).

Type of Interface: Touchscreen Computer or Tactile Tablet

Sensitivity and specificity in studies using a tactile tablet (0.81; 95%CI: 0.76 to 0.84 and 0.83; 95%CI: 0.79 to 0.87, $p = 0.71$) were not significantly different from those of studies using a touchscreen computer (0.82; 95%CI: 0.76 to 0.87, and 0.82; 95%CI: 0.76 to 0.87, $p = 0.68$) (Figure A5).

The cognitive tests with the highest combined sensitivity and specificity are summarized in the table below (Table 1).

Table 1. Cognitive tests with the highest pooled sensitivity and specificity.

Authors Year	Cognitive Testings	Duration (min)	Administration Mode	Cognitive Domains Assessed	Diagnostic Performance
An 2024 [76]	Seoul Digital Cognitive Test	30	NS	Attention, language, visuospatial function, memory, executive function	se: 0.81 spe: 0.89
Cheah 2022 [34]	Rey-Osterrieth Complex Figure	-	Assessor-administered	Visuospatial constructional capabilities and visual memory function (immediate and recall), copying	se: 0.85 spe: 0.91
Curiel 2016 [36]	Miami Test of Semantic Interference and Learning	8–10	NS	Semantic memory, categorization	se: 0.85 spe: 0.84
Garre-Olmo 2017 [28]	7 tasks: figure copying (simple spiral, 3D house, crossed pentagons), clock drawing test, sentence copying, writing a dictated sentence and a spontaneous sentence	10–15	Assessor-administered	Kinesthetic, visuospatial function, motor features	For the task writing a dictated sentence: se: 1.00 spe: 1.00
Li 2024 [74]	Drawing and Dragging Tasks	15	Self-administered	Orientation, selective and sustained attention, visual memory and reconstruction, visuospatial organization, and hand motor skills	se: 0.86 spe: 0.91
Park 2018 [51]	Mobile cognitive function test system for screening mild cognitive impairment	10	Assessor-administered	Memory, orientation, attention, visuospatial ability, language, executive function, reaction time	se: 0.99 spe: 0.93
Rodrigues-Salgado 2021 [54]	Brain Health Assessment	10	Assessor-administered	Memory, processing speed and executive function, visuospatial ability, language	se: 0.87 spe: 0.85
Saxton 2009 [21]	Computer Assessment of Mild Cognitive Impairment	20	Self-administered	Verbal and visual memory, attention, psychomotor speed, language, spatial and executive functioning	se: 0.86 spe: 0.94
Wu 2023 [63]	Efficient Online MCI Screening System	10	Self-administered	Memory, visual attention, flexibility, visuospatial and executive function, cognitive proceeding speed	se: 0.85 spe: 0.85

NS: Not specified.

4. Discussion

This review and meta-analysis showed that cognitive tests on touchscreen tools are appropriate to diagnose mNCD in older adults. A large variety of digital devices give satisfactory results in screening for mNCD/MCI. Although imperfect, the overall performance of touchscreen cognitive tests is similar to that of the MoCA, the reference clinical test to screen for mNCD, and several touchscreen cognitive tests outperformed it. However, the heterogeneity of methods and tools makes it difficult to compare studies, precluding any conclusion as to which one is the most effective.

The high degree of heterogeneity among the studies led us to examine test performance based on their main characteristics in a subgroup analysis. It is interesting to note that tests that are short, self-administered and conducted on a touchscreen tablet perform as well as longer tests administered by an assessor or on a fixed device. The former characteristics are very appealing for devices in clinical use, as they are simple, require little professional time and can be used on easily accessible systems.

Through our review, several tools appeared to us to be attractive, due to their good performance in diagnosing mild cognitive disorders (Table 1). Rodríguez-Salgado [54] developed the tool that combines the most practical clinical features and performance, namely the Brain Health Assessment (BHA). It consists of 4 tests: Favorites (associative memory), Match (processing speed and executive function), Line Orientation (visuospatial skills), and Animal Fluency (language). It is a brief, tablet-based cognitive battery validated in English and Spanish, administered by an assessor. Garre-Olmo [28] reported very good results in terms of sensitivity and specificity for the detection of MCI with the Cambridge Cognitive Examination Revised (CAM-COG-R). This is part of a bigger test and consists of 7 tasks assessing cognitive, kinesthetic, visuospatial and motor features on a touchscreen tablet. It can be obtained by purchasing the CAMDEX-DS-II (A Comprehensive Assessment for Dementia in People with Down Syndrome and Others with Intellectual Disabilities) and is available in English and Dutch. The current version is administered by a professional. Park worked on a promising application that revealed the particularities of people with cognitive impairments in their daily use of the telephone keypad [80]. One might imagine downloading this module, which would evaluate keyboard use over several hours or days, taking much of the stress out of traditional exams. Another approach is home assessment, as tested by Thompson with the Mobile Monitoring of Cognitive Change (M2C2) [81], which measures visual working memory, processing speed and episodic memory. The M2C2 is a self-administered test, performed completely remotely, and the episodic memory task demonstrated good ability to distinguish A β PET status among study participants.

This systematic review and meta-analysis have several limitations. First, it is likely to be affected by publication bias, as studies with null or negative results may be underrepresented. In addition, patient selection in the included studies limits generalizability. Indeed, many of the studies recruited highly selected or convenience samples, which may inflate performance estimates. The predominance of case-control study designs also introduces selection biases that could overestimate diagnostic accuracy compared to prospective cohort study designs. In order to limit potential bias, we excluded 13 articles that we rated, on an ad hoc basis, as having a high risk of bias according to the QUADAS-2 scale, which may also be considered a limitation of our meta-analysis. We also encountered some difficulties with the term “touchscreen device”, which is broad and unclear, as pointed out in Nurgalieva’s review about touchscreen devices. Indeed, devices are not often described in detail, and technology has undergone rapid development in recent years [82]. To address this challenge, we include several terms in our search equation intended to obtain a broad selection of articles and render our screening sensitive (see Table A1 in Appendix A). Nurgalieva’s review also highlights the heterogeneity of older people, and the need to

categorize them according to the sensory or cognitive limitations they encounter, in order to be able to propose adapted tools.

5. Conclusions

Touchscreen devices can be used to detect mNCD, but their development has yet to be validated by real-life studies. Further efforts are warranted to harmonize assessment methods, although initial results are promising.

In future works, there should be methods for standardizing test procedures so that tools can be compared more easily. It would be of interest for clinical studies to describe their methods accurately and in detail, as well as the manner in which the formal diagnosis was made, in order to fully understand what is being evaluated. Results relating to tool performance are important for the purposes of comparison and should be published in all articles. Touchscreen-based tools need to be evaluated in real-life conditions with people being diagnosed with cognitive disorders, and the results compared.

Supplementary Materials: The following supporting information can be downloaded at <https://www.mdpi.com/article/10.3390/diagnostics15182383/s1>. Reference [83] is cited in the supplementary materials.

Author Contributions: Conceptualization, J.B., S.P. and N.U.D.; methodology, J.B., N.U.D., C.L.-L. and F.M.; validation, J.B.; formal analysis, J.B., C.L.-L. and N.U.D.; investigation, N.U.D., F.M. and B.O.; data curation, N.U.D. and F.M.; writing—original draft preparation, N.U.D. and B.O.; writing—review and editing, J.B.; supervision, J.B. and S.P.; project administration, F.B. and J.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in this study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

Acknowledgments: The authors would like to thank Stéphanie Lamy, at Université Sorbonne Paris Nord for her support on the article search and Fiona Ecarnot (Université Marie & Louis Pasteur, Besançon, France) for proofreading the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MCI	Mild Cognitive Impairment
NCD	Neuro Cognitive Disorder
NINCDS-ADRDA	National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer's Disease and Related Disorders Association
NIAAA	National Institute on Aging-Alzheimer's Association
MoCA	Montreal Cognitive Assessment
MMSE	Mini Mental State Examination

Appendix A

Table A1. MeSH terms used for the database query.

Themes	MeSH Terms
Age factor	elderly, elder, aged, older adult, geriatrics
Screening/diagnostic	Diagnosis, diagnose, screening, assessment, evaluation, testing, detection
Neurocognitive condition	neurodegenerative diseases, cognitive disorders, neurocognitive disorders, dementia, Alzheimer disease
Touchscreen device	handheld computer, numeric tablet, smartphone, mobile applications, cell phone, touch screen, computer device, mobile technology, computer, electronic device, tablet, tablet computer, mobile device, web app

Table A2. Characteristics of studies using a tactile tablet or smartphone.

Author Year, Country	Participants <i>n</i> (age \pm SD)	Name of the Touchscreen Test Language	Functions Assessed	Self-Administration	Touchscreen Test Duration	Mobility	Reference Diagnostic Criteria	Neuropsychological Testing for Reference Diagnosis
Alegret 2020 [29], Spain	61 MCI (67.74 ± 7.93) 154 control (67.98 ± 7.92)	FACEmemory® Spanish	Memory, recognition	yes	30	yes	NINCDS/ADRDA	NS
An 2024 [76], Korea	126 MCI (70.2 ± 7.8) 55 SCD (69.7 ± 7.2)	Seoul Digital Cognitive Test Korean	Memory, attention, language, visuospatial	NS	30	yes	Petersen	SNSB-II
Berron 2024 [84], Germany and USA	25 MCI (69.2 ± 6.8) 78 control (68.2 ± 5.5)	Remote Digital Memory Composite English and German	Memory, discrimination, Recognition	yes	NS	yes	NINCDS/ADRDA	MMSE, CERAD and neuropsychological battery tests
Boz 2019 [31], Turkey	37 MCI (70.4 ± 7.3) 52 control (67.6 ± 6.0)	Virtual Supermarket Turkish	Visual and verbal memory, executive function, attention, spatial navigation	no	25	yes	Petersen	MMSE and neuropsychological battery tests
Cheah 2022 [34], Taiwan	59 MCI (67.5 ± 6.3) 59 control (62.6 ± 5.9)	Rey-Osterrieth Complex Figure Taiwanese	Visuospatial, memory, organization skills, attention, visuomotor coordination	no	NS	yes	Jak et al.	Rey-Osterrieth Complex Figure (paper)
Chin 2020 [35], Korea	42 MCI (71.7 ± 7.3) 26 control (68.5 ± 6.3)	Inbrain Cognitive Screening Test Korean	Attention, language, visuospatial, memory and executive function	yes	30	yes	Petersen	MMSE and Seoul Neuropsychological Screening Battery
Freedman 2018 [37], Canada	50 MCI 57 control	Toronto Cognitive Assessment English	Memory, orientation, visuospatial, attention, executive control, language	no	34	yes	NIA-AA	Neuropsychological battery tests

Table A2. Cont.

Author Year, Country	Participants n (age \pm SD)	Name of the Touchscreen Test Language	Functions Assessed	Self-Administration	Touchscreen Test Duration	Mobility	Reference Diagnostic Criteria	Neuropsychological Testing for Reference Diagnosis
Garre-Olmo 2017 [28], Spain	12 MCI (63.5 ± 6.5) 17 control (70.2 ± 7.4)	7 tasks Spanish	Cognitive, kinesthetic, visuospatial, motor features	no	10–15	yes	Petersen	Cambridge Cognitive Examination Revised
Gielis 2021 [39], Belgium	23 MCI (80.0 ± 5.2) 23 control (70.0 ± 5.4)	Klondike Solitaire Dutch	Cognitive skills, spatial and temporal function	yes	79	yes	Petersen	MoCA, MMSE and CDR
Ishikawa 2019 [27], Japan	25 MCI (75.9 ± 5.3) 36 control (70.0 ± 5.0)	Five drawing tasks Japanese	Memory, visuospatial, executive function	no	NS	yes	Petersen	MMSE
Kobayashi 2022 [43], Japan	65 MCI (74.5 ± 4.9) 52 control (72.6 ± 3.8)	Five drawing tasks Japanese	Memory, visuospatial, executive function	yes	NS	yes	NIA-AA	MMSE and neuropsychological battery tests
Kubota 2017 [20], USA	4 MCI 6 control	Virtual Kitchen Challenge English	Executive function, memory, attention, processing speed	yes	NS	yes	NS	Neuropsychological battery tests
Li 2025 [77], China	93 MCI (73.1 ± 4.8) 88 control (72.2 ± 5.1)	BrainNursing Chinese	Memory, language, attention, visuospatial, executive and fine motor functions	yes	25	yes	NS	MoCA, MMSE and a neuropsychological battery test
Li 2024 [74], China	108 MCI (71.3 ± 4.5) 99 control (70.1 ± 4.0)	Drawing and Dragging Tasks Chinese	Memory, attention, orientation, visuospatial, hand motor performance	yes	15	yes	NINDS-ADRDA	MoCA, MMSE and a neuropsychological battery test
Li 2023 [44], China	61 MCI (71.0 ± 5.8) 59 control (67.9 ± 6.2)	Digital cognitive tests + data from a smartwatch Chinese	Verbal fluency, memory, attention, listening, visuospatial and executive function	yes	NS	yes	Petersen	MMSE and MoCA

Table A2. Cont.

Author Year, Country	Participants n (age \pm SD)	Name of the Touchscreen Test Language	Functions Assessed	Self-Administration	Touchscreen Test Duration	Mobility	Reference Diagnostic Criteria	Neuropsychological Testing for Reference Diagnosis
Li 2023 [45], China	30 MCI (69.2 ± 5.9) 30 control (66.1 ± 7.9)	Fingertip interaction handwriting digital evaluation Chinese	Memory, orientation, optimal decision-making, fingertip executive dynamic abilities	no	NS	yes	NIA-AA	MMSE
Li 2022 [26], China	43 MCI (61.9 ± 9.6) 12 control (58.3 ± 14.6)	Tree drawing test Chinese	Feature extraction of the drawing	yes	NS	yes	NS	MMSE
Libon 2025 [19], USA	17 MCI (74.8 ± 7.1) 23 control (70.0 ± 8.7)	Digital neuropsychological protocol English	Memory, executive function, language	yes	10	yes	NS	Neuropsychological battery tests
Müller 2019 [47], Germany	138 MCI (70.8 ± 8.4) 137 control (69.6 ± 7.8)	Digital Clock Drawing Test German	Visual perception and encoding, attention, anticipatory thinking, motor planning and executive functions	NS	4	yes	Petersen	CERAD
Müller 2017 [48], Germany	30 MCI (65.3 ± 6.6) 20 control (66.9 ± 9.4)	Digitizing visuospatial construction task German	Visuospatial construction, movements kinematics, fine motor control, coordination	yes	<1	yes	Petersen and NIA-AA	CERAD (German)
Na 2023 [49], Korea	93 MCI 73 control	Inbrain Cognitive Screening Test Korean	Visuospatial skills, attention, memory, language, orientation, executive function	yes	NS	yes	Petersen	CERAD (Korean)

Table A2. Cont.

Author Year, Country	Participants n (age \pm SD)	Name of the Touchscreen Test Language	Functions Assessed	Self-Administration	Touchscreen Test Duration	Mobility	Reference Diagnostic Criteria	Neuropsychological Testing for Reference Diagnosis
Rigby 2024 [78], USA	62 MCI (72.1 ± 6.8) 96 control (69.0 ± 6.4)	NIH Toolbox Cognition Battery English and Spanish	Memory, executive function, processing speed	no	30	yes	NACC	National Alzheimer's Coordinating Center Unified Data set version 3
Robens 2019 [53], Germany	64 MCI (67.9 ± 11.2) 67 control (65.9 ± 10.3)	Digitized Tree Drawing Test German	Visuospatial and planning abilities, semantic memory and mental imaging	yes	4	yes	Petersen and McKhan	CERAD (German) and Clock Drawing test
Rodríguez-Salgado 2021 [54], Cuba	46 MCI (72.7 ± 7.5) 53 control (70.4 ± 5.9)	Brain Health Assessment Cuban-Spanish	Memory, processing speed, executive function, visuospatial skills, language	yes	10	yes	NS	MoCA, CERAD, BHA and neuropsychological battery tests
Simfukwe 2022 [22], Korea	22 MCI (67.2 ± 6.0) 22 control (53.0 ± 1.5)	Digital Trail Making Test-Black and White English and Korean	Attention, mental flexibility, visual scanning	yes	5	yes	NS	Trail Making Test-Black and White
Sloane 2022 [58], USA	21 MCI (71.1) 65 control (70.2)	Miro Health English	Movements, speech, language	yes	5 to 60	yes	American Academy of Neurology	MMSE, Telephone Interview for Cognitive Status; Geriatric Depression Scale
Suzumura 2018 [59], Japan	15 MCI (74.3 ± 6.0) 48 control (73.6 ± 8.3)	JustTouch screen Japanese	Finger motor skills	yes	NS	yes	Petersen	MMSE
Um Din 2024 [72], France	49 mNCD (79.5 ± 6.0) 47 control (78.2 ± 8.5)	Digital Clock Drawing Test French	Visuospatial, memory, planification	no	5	yes	DSM-V	Neuropsychological battery tests and paper CDT

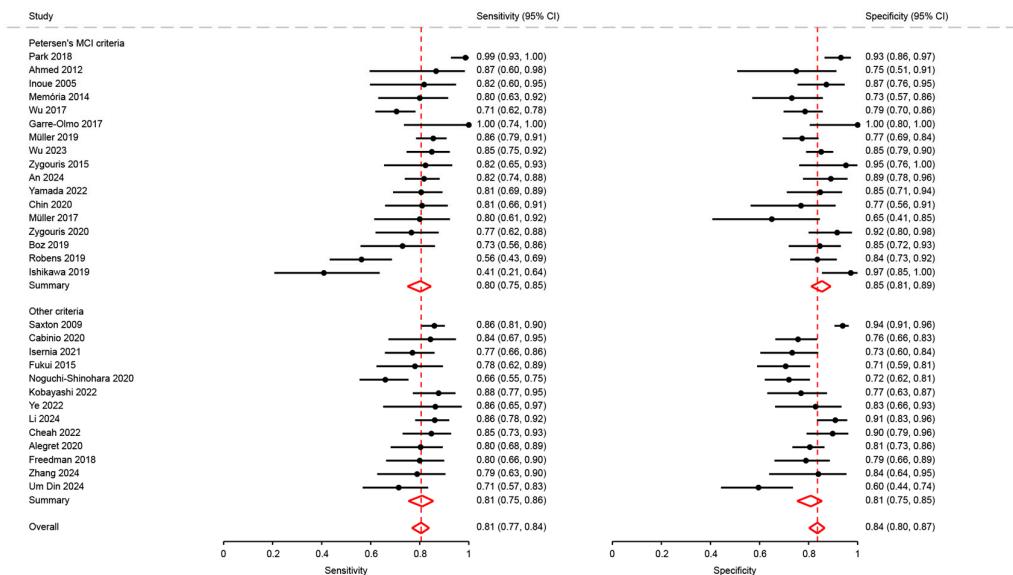
Table A2. Cont.

Author Year, Country	Participants n (age \pm SD)	Name of the Touchscreen Test Language	Functions Assessed	Self-Administration	Touchscreen Test Duration	Mobility	Reference Diagnostic Criteria	Neuropsychological Testing for Reference Diagnosis
Wu 2023 [63], China	73 MCI 175 control	Efficient Online MCI Screening System Chinese	Memory, attention, flexibility, visuospatial and executive function, cognitive proceeding speed	yes	10	yes	Petersen and American Academy of Neurology	MoCA-C, IADL, AD8 questionnaire
Yamada 2022 [65], Japan	67 MCI (74.1 ± 4.5) 46 control (72.3 ± 3.9)	Five drawing tasks Japanese	Visuospatial, planification	yes	NS	yes	McKhann, McKeith and Petersen	MMSE
Ye 2022 [66], USA	22 MCI (73.5 ± 5.9) 35 control (67.8 ± 9.6)	BrainCheck battery V4.0.0 English	Memory, inhibition, attention, flexibility	yes	15 to 37	yes	Alzheimer's Disease International	Neuropsychological battery tests
Yu 2019 [71], Taiwan	14 MCI (74.9 ± 5.2) 18 control (75.8 ± 5.8)	Graphomotor tasks: two graphic and two handwriting tasks Chinese	Fine motor function	no	NS	yes	Petersen	CDR and neuropsychological battery tests
Zhang 2024 [75], China	38 MCI (67.5 ± 7.2) 26 control (64.6 ± 7.0)	Tablet's Geriatric Complex Figure Test Chinese	Memory, visuospatial, planning, attention, fine motor coordination	no	23	yes	NIA-AA	Neuropsychological battery tests
Zygouris 2015 [68], Greece	34 MCI (70.3 ± 1.2) 21 control (66.6 ± 1.2)	Virtual Supermarket Test Greek	Memory, executive function, attention, spatial navigation	no	10	yes	Petersen	MoCA and MMSE
Zygouris 2020 [69], Greece	47 MCI (67.9 ± 0.8) 48 SCD (66.0 ± 0.6)	Virtual Supermarket Test Greek	Visual and verbal memory, executive function, attention, spatial navigation	yes	30	yes	Petersen	MMSE, MoCA

NS: not specified; SCD: Subjective Cognitive Decline. NIA-AA: National Institute on Aging-Alzheimer's Association; NINCDS-ADRDA: National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer's disease and related Disorders Association; NACC: National Alzheimer's Coordinating Center; MoCA: Montreal Cognitive Assessment; CERAD: Consortium to Establish a Registry for Alzheimer's Disease neuropsychological test battery; CDT: Clock Drawing Test; SNSB: Seoul Neuropsychological Screening Battery.

Table A3. Characteristics of the studies using a computer touchscreen.

Author Year, Country	Participants <i>n</i> (age \pm SD)	Name of the Touchscreen Test Language	Functions Assessed	Self-Administration	Touchscreen Test Duration	Mobility	Reference Diagnostic Criteria	Neuropsychological Testing for Reference Diagnosis
Ahmed 2012 [23], England	15 MCI (80.9 ± 7.2) 20 control (77.4 ± 4.0)	Computer-Administered Neuropsychological Screen for Mild Cognitive Impairment English	Memory, language, executive functions	yes	30	no	Petersen	ACE-R, MoCA
Cabinio 2020 [32], Italy	32 MCI (76.7 ± 5.3) 107 control (76.5 ± 3.0)	The Smart Aging Serious Game Italian	Executive function, attention, memory and orientation	yes	NS	NS	NIA-AA, DSM-5	MoCA, FCSRT, TMT A&B
Curiel 2016 [36], USA	34 MCI (77.6 ± 6.3) 64 control (74.0 ± 7.3)	The Smart Aging Serious Game English	Memory, categorization	NS	10	NS	NS	MMSE and the Loewenstein-Acevedo Scales for Semantic Interference and Learning
Fukui 2015 [38], Japan	41 MCI (75.3 ± 6.5) 75 control (75.1 ± 6.1)	Touch-panel screening test: flipping cards, finding mistakes, arranging pictures and beating evils Japanese	Memory, attention and discrimination, memory, judgment	NS	NS	no	ADNI	MMSE, HDS-R
Inoue 2005 [18], Japan	22 MCI (72.0 ± 9.6) 55 control (72.6 ± 7.3)	Six tests: age and year of birth, 3 words memory test, time orientation test, 2 modified delayed-recall test, visual working memory test Japanese	Memory, orientation, visual working memory	yes	5	no	Petersen	Neuropsychological tests, neuroimaging examination and medical checks


Table A3. Cont.

Author Year, Country	Participants n (age \pm SD)	Name of the Touchscreen Test Language	Functions Assessed	Self-Administration	Touchscreen Test Duration	Mobility	Reference Diagnostic Criteria	Neuropsychological Testing for Reference Diagnosis
Isernia 2021 [41], Italy	60 MCI (74.2 ± 5.0) 74 control (75.5 ± 2.7)	Smart Aging Serious Game: 5 tasks of functional activities of everyday life Italian	Memory, spatial orientation, executive functions, attention	yes	30	NS	NINCDS-ADRDA	MoCA and neuropsychological battery
Liu 2023 [73], China	74 MCI (66.3 ± 10.1)	Computerized cognitive training Chinese	Memory, attention, perception, executive function	NS	NS	NS	Petersen	MoCA, MMSE, CDR
Memória 2014 [46], Brasil	35 MCI (73.8 ± 5.5) 41 control (71.7 ± 4.6)	Computer-Administered Neuropsychological Screen for Mild Cognitive Impairment Portuguese	Executive function, language, memory	yes	30–50	NS	Petersen	MoCA
Noguchi-Shinohara 2020 [50], Japan	94 MCI (75.8 ± 4.1) 100 control (75.0 ± 3.2)	Computerized assessment battery for Cognition Japanese	Time orientation, recognition, memory	yes	5	no	International Working Group	MMSE
Park 2018 [51], Korea	74 MCI (74.4 ± 6.5) 103 control (74.9 ± 7.0)	Mobile cognitive function test system for screening mild cognitive impairment English and Korean	Orientation, memory, attention, visuospatial ability, language, executive function, reaction time	no	10	yes	Petersen	MoCA-K
Porrselvi 2022 [25], India	18 MCI (71.0 ± 5.4) 100 control (66.3 ± 7.8)	Tamil computer-assisted cognitive test Battery Tamil	Attention, memory, language, visuospatial skills and spatial cognition, executive function, processing speed	NS	150	yes	Petersen	MoCA, CDR Scale, MMSE, and neuropsychological battery

Table A3. Cont.

Author Year, Country	Participants n (age \pm SD)	Name of the Touchscreen Test Language	Functions Assessed	Self-Administration	Touchscreen Test Duration	Mobility	Reference Diagnostic Criteria	Neuropsychological Testing for Reference Diagnosis
Saxton 2009 [21], USA	228 MCI (75.2 ± 6.8) 296 control (71.8 ± 5.9)	Computer Assessment of Mild Cognitive Impairment English	Memory verbal and visual, attention, psychomotor speed, language, spatial and executive functioning	yes	20	yes	Criteria of the University of Pittsburgh Alzheimer Disease Research (ADRC)	MMSE and neuropsychological battery
Wang 2023 [24], China	46 MCI (70.0) 46 control (68.0)	Smart 2-Min Mobile Alerting Method Chinese	Fingertip interaction, spatial navigation, executive process	no	2	yes	NIA-AA	MMSE
Wong 2017 [62], China	59 MCI (78.2 ± 8.1) 101 control (70.5 ± 8.6)	Computerized Cognitive Screen English	Memory, executive functions, orientation, attention and working memory	yes	15	no	NS	MoCA
Wu 2017 [64], France	129 MCI (76.5 ± 7.5) 112 control (74.7 ± 6.9)	Tablet-based cancellation test French	Attention, visuospatial, psychomotor speed, fine motor coordination	yes	3	yes	Petersen	K-T cancellation test

NS: not specified. NIA-AA: National Institute on Aging-Alzheimer's Association; NINCDS-ADRDA: National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer's disease and related Disorders Association; ADNI: Alzheimer's Disease in neuroimaging initiative; CDR: Clinical Dementia Rating Scale.

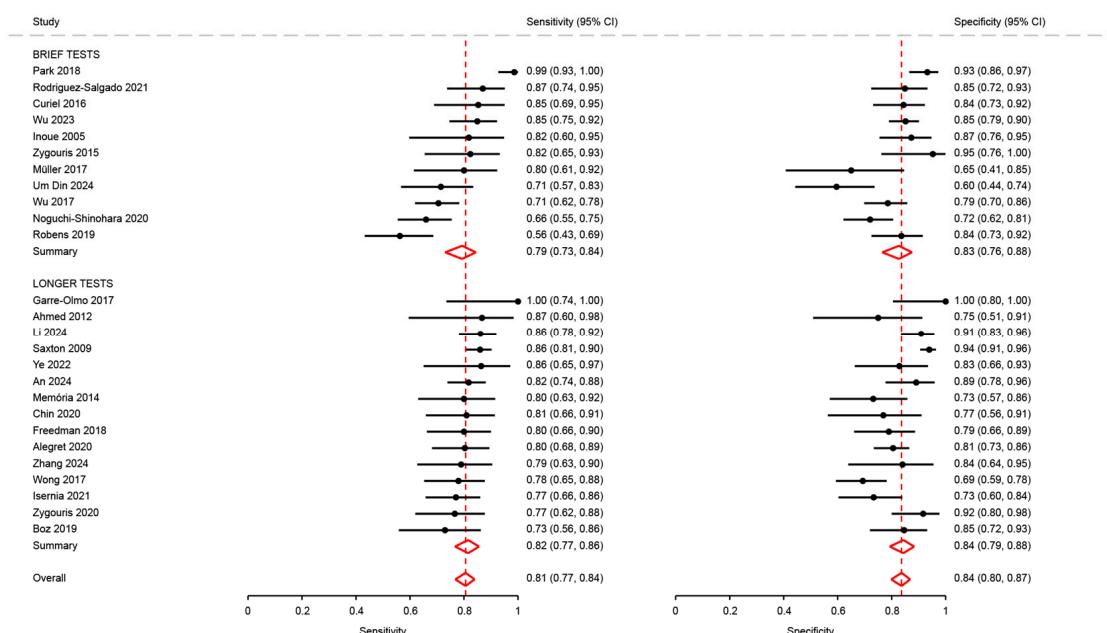
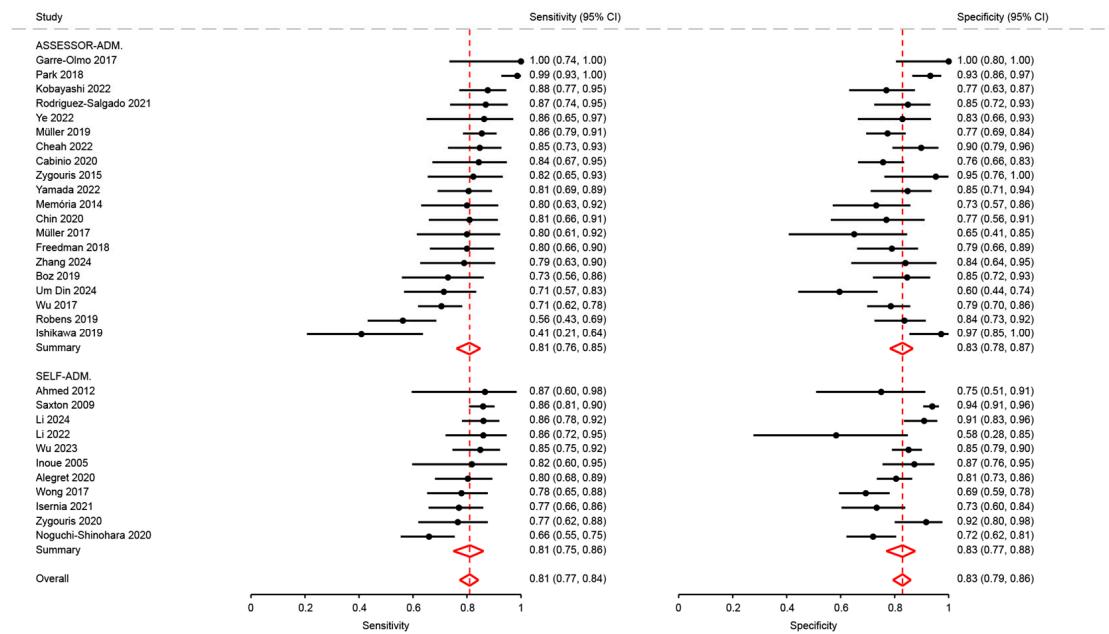
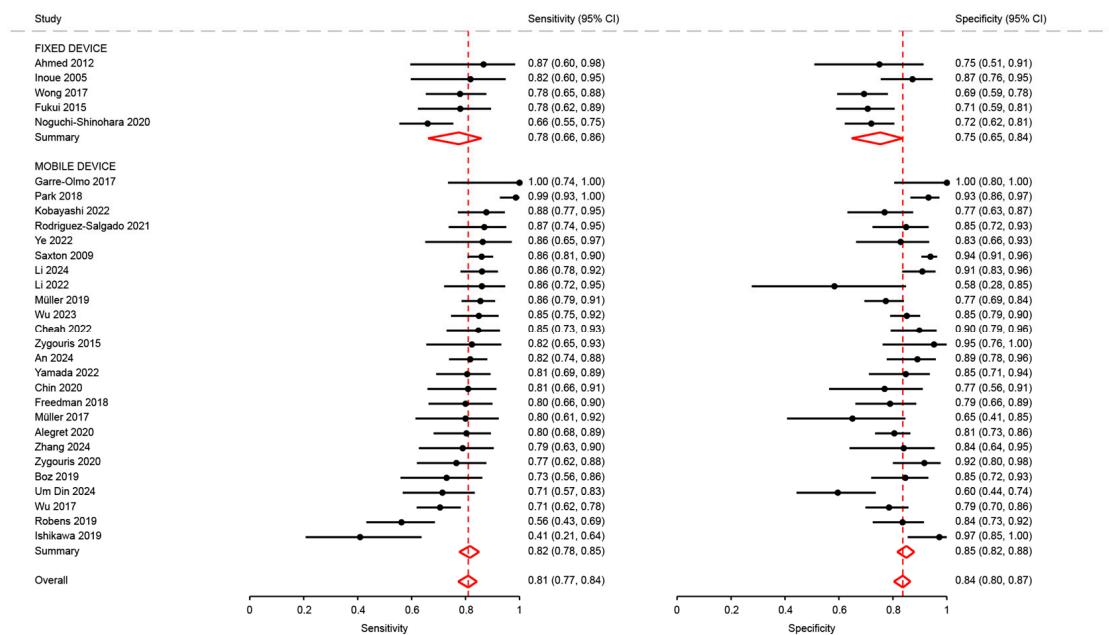
Figure A1. Analysis of sensitivity of studies using Petersen's MCI criteria with others [18,21,23,27–29,31,32,34,35,37,38,41,43,46–48,50,51,53,63–66,68,69,72,74–76].

Table A4. Results of the quality assessment of the articles by the QUADAS-2.

Table A4. Cont.

Study	Risk of Bias				Applicability Concerns				Decision
	Patient Selection	Index Test	Reference Standard	Flow and Timing	Patient Selection	Index Test	Reference Standard		
Mychajliw 2024 [79]	⊕	⊕	?	?	?	⊕	?	excluded	
Na 2023 [49]	?	⊕	⊕	⊕	?	⊕	⊕	included	
Noguchi-Shinohara 2020 [50]	⊕	⊕	⊕	⊕	⊕	⊕	⊕	included	
Park 2018 [51]	⊕	⊕	⊕	?	⊕	⊕	⊕	included	
Porrselvi 2022 [25]	⊕	⊕	⊕	⊕	⊕	⊕	⊕	included	
Possin 2018 [52]	?	?	⊕	?	⊕	⊕	⊕	excluded	
Rigby 2024 [78]	⊕	⊕	⊕	⊕	⊕	⊕	⊕	included	
Robens 2019 [53]	⊕	⊕	⊕	⊕	⊕	⊕	⊕	included	
Rodríguez-Salgado 2021 [54]	⊕	⊕	⊕	⊕	⊕	⊕	⊕	included	
Satler 2015 [55]	?	⊕	⊕	?	⊕	⊕	?	excluded	
Saxton 2009 [21]	⊕	⊕	⊕	⊕	⊕	⊕	⊕	included	
Scharre 2017 [56]	⊕	⊕	⊕	⊕	⊕	⊕	⊕	excluded	
Shigemori 2015 [57]	⊕	⊕	?	?	⊕	⊕	?	excluded	
Simfukwe 2022 [22]	⊕	⊕	?	⊕	⊕	⊕	⊕	included	
Sloane 2022 [58]	⊕	⊕	⊕	⊕	⊕	⊕	⊕	included	
Suzumura 2018 [59]	⊕	⊕	⊕	⊕	⊕	⊕	⊕	included	
Tamura 2006 [60]	?	⊕	?	?	⊕	⊕	⊕	excluded	
Um Din 2024 [72]	⊕	⊕	⊕	⊕	⊕	⊕	⊕	included	
Wang 2023 [24]	⊕	⊕	⊕	⊕	⊕	⊕	⊕	included	
Wilks 2021 [61]	?	⊕	⊕	?	⊕	?	?	excluded	
Wong 2017 [62]	⊕	⊕	⊕	⊕	⊕	⊕	⊕	included	
Wu 2023 [63]	⊕	⊕	⊕	⊕	⊕	⊕	⊕	included	
Wu 2017 [64]	⊕	⊕	⊕	⊕	⊕	⊕	⊕	included	
Yamada 2022 [65]	⊕	⊕	⊕	⊕	⊕	⊕	⊕	included	
Ye 2022 [66]	⊕	⊕	?	?	⊕	⊕	⊕	included	
Yu 2019 [71]	⊕	?	⊕	⊕	⊕	?	⊕	included	
Zhao 2019 [67]	?	?	?	?	⊕	⊕	⊕	excluded	
Zhang 2024 [75]	⊕	⊕	⊕	⊕	⊕	⊕	⊕	included	
Zygouris 2015 [68]	⊕	⊕	⊕	⊕	⊕	⊕	⊕	included	
Zygouris 2020 [69]	⊕	⊕	⊕	⊕	⊕	⊕	⊕	included	

⊕ Low Risk; ⊖ High Risk; ? Unclear Risk.

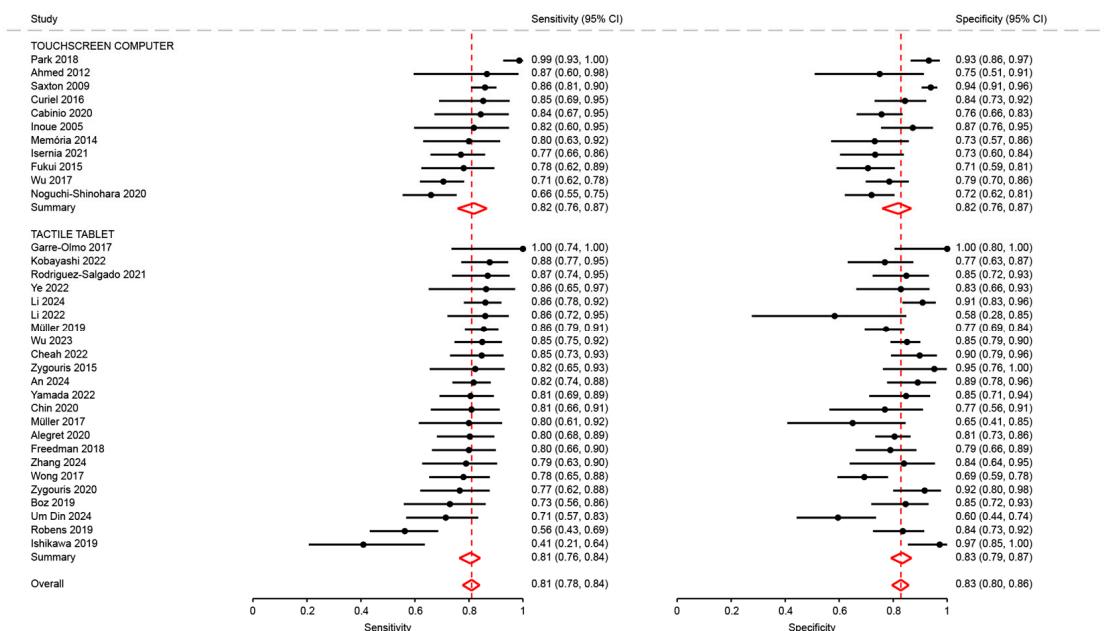

Figure A2. Analysis of sensitivity and specificity for the diagnosis of mild cognitive disorders by test duration [18,21,23,28,29,31,35–37,41,46,48,50,51,53,54,62–64,66,68,69,72,74–76].

Figure A3. Analysis of sensitivity and specificity for the diagnosis of mild cognitive disorders by modality of assessment [18,21,23,26–29,31,32,34,35,37,41,43,46–48,50,51,53,54,62–66,68,69,72,74–76].

Figure A4. Analysis of sensitivity and specificity for the diagnosis of mild cognitive disorders by type of mobile device [18,21,23,26–29,31,34,35,37,38,43,47,48,50,51,53,54,62–66,68,69,72,74–76].

Figure A5. Analysis of sensitivity and specificity for the diagnosis of mild cognitive disorders by type of touchscreen device [18,21,23,26–29,31,32,34–38,41,43,46–48,50,51,53,54,62–66,68,69,72,74–76].

References

1. Dubois, B.; Padovani, A.; Scheltens, P.; Rossi, A.; Dell’Agnello, G. Timely Diagnosis for Alzheimer’s Disease: A Literature Review on Benefits and Challenges. *J. Alzheimers Dis.* **2016**, *49*, 617–631. [\[CrossRef\]](#)
2. Porsteinsson, A.P.; Isaacson, R.S.; Knox, S.; Sabbagh, M.N.; Rubino, I. Diagnosis of Early Alzheimer’s Disease: Clinical Practice in 2021. *J. Prev. Alzheimers Dis.* **2021**, *8*, 371–386. [\[CrossRef\]](#) [\[PubMed\]](#)
3. Stokin, G.B.; Krell-Roesch, J.; Petersen, R.C.; Geda, Y.E. Mild Neurocognitive Disorder: An Old Wine in a New Bottle. *Harv. Rev. Psychiatry* **2015**, *23*, 368–376. [\[CrossRef\]](#) [\[PubMed\]](#)
4. Jongsiriyanong, S.; Limpawattana, P. Mild Cognitive Impairment in Clinical Practice: A Review Article. *Am. J. Alzheimers Dis. Other Demen.* **2018**, *33*, 500–507. [\[CrossRef\]](#) [\[PubMed\]](#)
5. Sanford, A.M. Mild Cognitive Impairment. *Clin. Geriatr. Med.* **2017**, *33*, 325–337. [\[CrossRef\]](#)
6. Wood, E.; Willoughby, T.; Rushing, A.; Bechtel, L.; Gilbert, J. Use of Computer Input Devices by Older Adults. *J. Appl. Gerontol.* **2005**, *24*, 419–438. [\[CrossRef\]](#)
7. Sachs-Ericsson, N.; Blazer, D.G. The New DSM-5 Diagnosis of Mild Neurocognitive Disorder and Its Relation to Research in Mild Cognitive Impairment. *Aging Ment. Health* **2015**, *19*, 2–12. [\[CrossRef\]](#)
8. Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. *J. Psychiatr. Res.* **1975**, *12*, 189–198. [\[CrossRef\]](#)
9. Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. *J. Am. Geriatr. Soc.* **2005**, *53*, 695–699. [\[CrossRef\]](#)
10. Pinto, T.C.C.; Machado, L.; Bulgacov, T.M.; Rodrigues-Júnior, A.L.; Costa, M.L.G.; Ximenes, R.C.C.; Sougey, E.B. Is the Montreal Cognitive Assessment (MoCA) Screening Superior to the Mini-Mental State Examination (MMSE) in the Detection of Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD) in the Elderly? *Int Psychogeriatr* **2019**, *31*, 491–504. [\[CrossRef\]](#)
11. Chun, C.T.; Seward, K.; Patterson, A.; Melton, A.; MacDonald-Wicks, L. Evaluation of Available Cognitive Tools Used to Measure Mild Cognitive Decline: A Scoping Review. *Nutrients* **2021**, *13*, 3974. [\[CrossRef\]](#)
12. Breton, A.; Casey, D.; Arnaoutoglou, N.A. Cognitive Tests for the Detection of Mild Cognitive Impairment (MCI), the Prodromal Stage of Dementia: Meta-Analysis of Diagnostic Accuracy Studies. *Int. J. Geriatr. Psychiatry* **2019**, *34*, 233–242. [\[CrossRef\]](#)
13. Giaquinto, F.; Battista, P.; Angelelli, P. Touchscreen Cognitive Tools for Mild Cognitive Impairment and Dementia Used in Primary Care Across Diverse Cultural and Literacy Populations: A Systematic Review. *J. Alzheimers Dis.* **2022**, *90*, 1359–1380. [\[CrossRef\]](#) [\[PubMed\]](#)
14. Um Din, N.; Maronnat, F.; Zolnowski-Kolp, V.; Otmane, S.; Belmin, J. Diagnosis Accuracy of Touchscreen-Based Testings for Major Neurocognitive Disorders: A Systematic Review and Meta-Analysis. *Age Ageing* **2025**, *54*, afaf204. [\[CrossRef\]](#) [\[PubMed\]](#)

15. Salameh, J.-P.; Bossuyt, P.M.; McGrath, T.A.; Thombs, B.D.; Hyde, C.J.; Macaskill, P.; Deeks, J.J.; Leeflang, M.; Korevaar, D.A.; Whiting, P.; et al. Preferred Reporting Items for Systematic Review and Meta-Analysis of Diagnostic Test Accuracy Studies (PRISMA-DTA): Explanation, Elaboration, and Checklist. *BMJ* **2020**, *370*, m2632. [\[CrossRef\]](#) [\[PubMed\]](#)

16. Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M. QUADAS-2 Group QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. *Ann. Intern. Med.* **2011**, *155*, 529–536. [\[CrossRef\]](#)

17. Nyaga, V.N.; Arbyn, M. Metadta: A Stata Command for Meta-Analysis and Meta-Regression of Diagnostic Test Accuracy Data—A Tutorial. *Arch. Public Health* **2022**, *80*, 95. [\[CrossRef\]](#)

18. Inoue, M.; Urakami, K.; Taniguchi, M.; Kimura, Y.; Saito, J.; Nakashima, K. Evaluation of a Computerized Test System to Screen for Mild Cognitive Impairment. *Psychogeriatrics* **2005**, *5*, 36–41. [\[CrossRef\]](#)

19. Libon, D.J.; Swenson, R.; Price, C.C.; Lamar, M.; Cosentino, S.; Bezdecik, O.; Kling, M.A.; Tabyne, S.; Jannati, A.; Banks, R.; et al. Digital Assessment of Cognition in Neurodegenerative Disease: A Data Driven Approach Leveraging Artificial Intelligence. *Front. Psychol.* **2024**, *15*, 1415629. [\[CrossRef\]](#)

20. Kubota, Y.; Yamaguchi, T.; Maeta, T.; Okada, Y.; Miura, Y.; Martono, N.P.; Ohwada, H.; Tania, G. Feature Extraction Based on Touch Interaction Data in Virtual Reality-Based IADL for Characterization of Mild Cognitive Impairment. In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Porto, Portugal, 27 February–1 March 2017; pp. 152–157. [\[CrossRef\]](#)

21. Saxton, J.; Morrow, L.; Eschman, A.; Archer, G.; Luther, J.; Zuccolotto, A. Computer Assessment of Mild Cognitive Impairment. *Postgrad. Med.* **2009**, *121*, 177–185. [\[CrossRef\]](#)

22. Simfukwe, C.; Youn, Y.C.; Kim, S.Y.; An, S.S. Digital Trail Making Test-Black and White: Normal vs MCI. *Appl. Neuropsychol. Adult* **2022**, *29*, 1296–1303. [\[CrossRef\]](#)

23. Ahmed, S.; de Jager, C.; Wilcock, G. A Comparison of Screening Tools for the Assessment of Mild Cognitive Impairment: Preliminary Findings. *Neurocase* **2012**, *18*, 336–351. [\[CrossRef\]](#)

24. Wang, Y.; Chen, T.; Wang, C.; Ogihara, A.; Ma, X.; Huang, S.; Zhou, S.; Li, S.; Liu, J.; Li, K. A New Smart 2-Min Mobile Alerting Method for Mild Cognitive Impairment Due to Alzheimer’s Disease in the Community. *Brain Sci.* **2023**, *13*, 244. [\[CrossRef\]](#) [\[PubMed\]](#)

25. Porrselvi, A.P. TAM Battery: Development and Pilot Testing of a Tamil Computer-Assisted Cognitive Test Battery for Older Adults. *Clin. Neuropsychol.* **2023**, *37*, 1005–1024. [\[CrossRef\]](#)

26. Li, J.; Yang, J.; Yang, J.; Yang, H.; Lan, M.; Gao, L. Characterizing Cognitive Impairment through Drawing Features Extracted from the Tree Drawing Test. In Proceedings of the 2022 7th International Conference on Intelligent Informatics and Biomedical Science (ICIIBMS), Nara, Japan, 24–26 November 2022; Volume 7, pp. 341–347.

27. Ishikawa, T.; Nemoto, M.; Nemoto, K.; Takeuchi, T.; Numata, Y.; Watanabe, R.; Tsukada, E.; Ota, M.; Higashi, S.; Arai, T.; et al. Handwriting Features of Multiple Drawing Tests for Early Detection of Alzheimer’s Disease: A Preliminary Result. *Stud. Health Technol. Inform.* **2019**, *264*, 168–172. [\[CrossRef\]](#) [\[PubMed\]](#)

28. Garre-Olmo, J.; Faúndez-Zanuy, M.; López-de-Ipiña, K.; Calvó-Perxas, L.; Turró-Garriga, O. Kinematic and Pressure Features of Handwriting and Drawing: Preliminary Results Between Patients with Mild Cognitive Impairment, Alzheimer Disease and Healthy Controls. *Curr. Alzheimer Res.* **2017**, *14*, 960–968. [\[CrossRef\]](#)

29. Alegret, M.; Muñoz, N.; Roberto, N.; Rentz, D.M.; Valero, S.; Gil, S.; Marquié, M.; Hernández, I.; Riveros, C.; Sanabria, A.; et al. A Computerized Version of the Short Form of the Face-Name Associative Memory Exam (FACEmemory®) for the Early Detection of Alzheimer’s Disease. *Alzheimers Res. Ther.* **2020**, *12*, 25. [\[CrossRef\]](#)

30. Bergeron, M.F.; Landset, S.; Zhou, X.; Ding, T.; Khoshgoftaar, T.M.; Zhao, F.; Du, B.; Chen, X.; Wang, X.; Zhong, L.; et al. Utility of MemTrax and Machine Learning Modeling in Classification of Mild Cognitive Impairment. *J. Alzheimers Dis.* **2020**, *77*, 1545–1558. [\[CrossRef\]](#)

31. Eraslan Boz, H.; Limoncu, H.; Zygouris, S.; Tsolaki, M.; Giakoumis, D.; Votis, K.; Tzovaras, D.; Öztürk, V.; Yener, G.G. A New Tool to Assess Amnestic Mild Cognitive Impairment in Turkish Older Adults: Virtual Supermarket (VSM). *Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn.* **2020**, *27*, 639–653. [\[CrossRef\]](#)

32. Cabinio, M.; Rossetto, F.; Isernia, S.; Saibene, F.L.; Di Cesare, M.; Borgnis, F.; Pazzi, S.; Migliazza, T.; Alberoni, M.; Blasi, V.; et al. The Use of a Virtual Reality Platform for the Assessment of the Memory Decline and the Hippocampal Neural Injury in Subjects with Mild Cognitive Impairment: The Validity of Smart Aging Serious Game (SASG). *J. Clin. Med.* **2020**, *9*, 1355. [\[CrossRef\]](#)

33. Cerino, E.S.; Katz, M.J.; Wang, C.; Qin, J.; Gao, Q.; Hyun, J.; Hakun, J.G.; Roque, N.A.; Derby, C.A.; Lipton, R.B.; et al. Variability in Cognitive Performance on Mobile Devices Is Sensitive to Mild Cognitive Impairment: Results from the Einstein Aging Study. *Front. Digit. Health* **2021**, *3*, 758031. [\[CrossRef\]](#)

34. Cheah, W.-T.; Hwang, J.-J.; Hong, S.-Y.; Fu, L.-C.; Chang, Y.-L.; Chen, T.-F.; Chen, I.-A.; Chou, C.-C. A Digital Screening System for Alzheimer Disease Based on a Neuropsychological Test and a Convolutional Neural Network: System Development and Validation. *JMIR Med. Inform.* **2022**, *10*, e31106. [\[CrossRef\]](#)

35. Chin, J.; Kim, D.E.; Lee, H.; Yun, J.; Lee, B.H.; Park, J.; Yeom, J.; Shin, D.S.; Na, D.L. A Validation Study of the Inbrain CST: A Tablet Computer-Based Cognitive Screening Test for Elderly People with Cognitive Impairment. *J. Korean Med. Sci.* **2020**, *35*, e292. [\[CrossRef\]](#)

36. Curiel, R.E.; Crocco, E.; Rosado, M.; Duara, R.; Greig, M.T.; Raffo, A.; Loewenstein, D.A. A Brief Computerized Paired Associate Test for the Detection of Mild Cognitive Impairment in Community-Dwelling Older Adults. *J. Alzheimers Dis.* **2016**, *54*, 793–799. [\[CrossRef\]](#) [\[PubMed\]](#)

37. Freedman, M.; Leach, L.; Carmela Tartaglia, M.; Stokes, K.A.; Goldberg, Y.; Spring, R.; Nourhaghghi, N.; Gee, T.; Strother, S.C.; Alhaj, M.O.; et al. The Toronto Cognitive Assessment (TorCA): Normative Data and Validation to Detect Amnestic Mild Cognitive Impairment. *Alzheimers Res. Ther.* **2018**, *10*, 65. [\[CrossRef\]](#) [\[PubMed\]](#)

38. Fukui, Y.; Yamashita, T.; Hishikawa, N.; Kurata, T.; Sato, K.; Omote, Y.; Kono, S.; Yunoki, T.; Kawahara, Y.; Hatanaka, N.; et al. Computerized Touch-Panel Screening Tests for Detecting Mild Cognitive Impairment and Alzheimer’s Disease. *Intern. Med.* **2015**, *54*, 895–902. [\[CrossRef\]](#) [\[PubMed\]](#)

39. Gielis, K.; Vanden Abeele, M.-E.; Verbert, K.; Tournoy, J.; De Vos, M.; Vanden Abeele, V. Detecting Mild Cognitive Impairment via Digital Biomarkers of Cognitive Performance Found in Klondike Solitaire: A Machine-Learning Study. *Digit. Biomark.* **2021**, *5*, 44–52. [\[CrossRef\]](#)

40. Groppell, S.; Soto-Ruiz, K.M.; Flores, B.; Dawkins, W.; Smith, I.; Eagleman, D.M.; Katz, Y. A Rapid, Mobile Neurocognitive Screening Test to Aid in Identifying Cognitive Impairment and Dementia (BrainCheck): Cohort Study. *JMIR Aging* **2019**, *2*, e12615. [\[CrossRef\]](#)

41. Isernia, S.; Cabinio, M.; Di Tella, S.; Pazzi, S.; Vannetti, F.; Gerli, F.; Mosca, I.E.; Lombardi, G.; Macchi, C.; Sorbi, S.; et al. Diagnostic Validity of the Smart Aging Serious Game: An Innovative Tool for Digital Phenotyping of Mild Neurocognitive Disorder. *J. Alzheimers Dis.* **2021**, *83*, 1789–1801. [\[CrossRef\]](#)

42. Ishiwata, A.; Kitamura, S.; Nomura, T.; Nemoto, R.; Ishii, C.; Wakamatsu, N.; Katayama, Y. Early Identification of Cognitive Impairment and Dementia: Results from Four Years of the Community Consultation Center. *Arch. Gerontol. Geriatr.* **2014**, *59*, 457–461. [\[CrossRef\]](#)

43. Kobayashi, M.; Yamada, Y.; Shinkawa, K.; Nemoto, M.; Nemoto, K.; Arai, T. Automated Early Detection of Alzheimer’s Disease by Capturing Impairments in Multiple Cognitive Domains with Multiple Drawing Tasks. *J. Alzheimers Dis.* **2022**, *88*, 1075–1089. [\[CrossRef\]](#)

44. Li, A.; Li, J.; Zhang, D.; Wu, W.; Zhao, J.; Qiang, Y. Synergy through Integration of Digital Cognitive Tests and Wearable Devices for Mild Cognitive Impairment Screening. *Front. Hum. Neurosci.* **2023**, *17*, 1183457. [\[CrossRef\]](#)

45. Li, K.; Ma, X.; Chen, T.; Xin, J.; Wang, C.; Wu, B.; Ogihara, A.; Zhou, S.; Liu, J.; Huang, S.; et al. A New Early Warning Method for Mild Cognitive Impairment Due to Alzheimer’s Disease Based on Dynamic Evaluation of the “Spatial Executive Process”. *Digit. Health* **2023**, *9*, 20552076231194938. [\[CrossRef\]](#)

46. Memória, C.M.; Yassuda, M.S.; Nakano, E.Y.; Forlenza, O.V. Contributions of the Computer-Administered Neuropsychological Screen for Mild Cognitive Impairment (CANS-MCI) for the Diagnosis of MCI in Brazil. *Int. Psychogeriatr.* **2014**, *26*, 1483–1491. [\[CrossRef\]](#) [\[PubMed\]](#)

47. Müller, S.; Herde, L.; Preische, O.; Zeller, A.; Heymann, P.; Robens, S.; Elbing, U.; Laske, C. Diagnostic Value of Digital Clock Drawing Test in Comparison with CERAD Neuropsychological Battery Total Score for Discrimination of Patients in the Early Course of Alzheimer’s Disease from Healthy Individuals. *Sci. Rep.* **2019**, *9*, 3543. [\[CrossRef\]](#) [\[PubMed\]](#)

48. Müller, S.; Preische, O.; Heymann, P.; Elbing, U.; Laske, C. Diagnostic Value of a Tablet-Based Drawing Task for Discrimination of Patients in the Early Course of Alzheimer’s Disease from Healthy Individuals. *J. Alzheimers Dis.* **2017**, *55*, 1463–1469. [\[CrossRef\]](#) [\[PubMed\]](#)

49. Na, S.; Seo, S.W.; Kim, Y.J.; Yoo, H.; Lee, E.-S. Correlation Analysis between Subtest Scores of CERAD-K and a Newly Developed Tablet Computer-Based Digital Cognitive Test (Inbrain CST). *Front. Aging Neurosci.* **2023**, *15*, 1178324. [\[CrossRef\]](#)

50. Noguchi-Shinohara, M.; Domoto, C.; Yoshida, T.; Niwa, K.; Yuki-Nozaki, S.; Samuraki-Yokohama, M.; Sakai, K.; Hamaguchi, T.; Ono, K.; Iwasa, K.; et al. A New Computerized Assessment Battery for Cognition (C-ABC) to Detect Mild Cognitive Impairment and Dementia around 5 Min. *PLoS ONE* **2020**, *15*, e0243469. [\[CrossRef\]](#)

51. Park, J.-H.; Jung, M.; Kim, J.; Park, H.Y.; Kim, J.-R.; Park, J.-H. Validity of a Novel Computerized Screening Test System for Mild Cognitive Impairment. *Int. Psychogeriatr.* **2018**, *30*, 1455–1463. [\[CrossRef\]](#)

52. Possin, K.; Moskowitz, T.; Erlhoff, S.; Rogers, K.; Johnson, E.; Steele, N.; Higgins, J.; Stiver, J.; Alioto, A.; Farias, S.; et al. The Brain Health Assessment for Detecting and Diagnosing Neurocognitive Disorders. *J. Am. Geriatr. Soc.* **2018**, *66*, 150–156. [\[CrossRef\]](#)

53. Robens, S.; Heymann, P.; Gienger, R.; Hett, A.; Müller, S.; Laske, C.; Loy, R.; Ostermann, T.; Elbing, U. The Digital Tree Drawing Test for Screening of Early Dementia: An Explorative Study Comparing Healthy Controls, Patients with Mild Cognitive Impairment, and Patients with Early Dementia of the Alzheimer Type. *J. Alzheimers Dis.* **2019**, *68*, 1561–1574. [\[CrossRef\]](#)

54. Rodríguez-Salgado, A.M.; Libre-Guerra, J.J.; Tsoy, E.; Peñalver-Guia, A.I.; Bringas, G.; Erlhoff, S.J.; Kramer, J.H.; Allen, I.E.; Valcour, V.; Miller, B.L.; et al. A Brief Digital Cognitive Assessment for Detection of Cognitive Impairment in Cuban Older Adults. *J. Alzheimers Dis.* **2021**, *79*, 85–94. [\[CrossRef\]](#) [\[PubMed\]](#)

55. Satler, C.; Beham, F.; Garcias, A.; Tomaz, C.; Tavares, M. Computerized Spatial Delayed Recognition Span Task: A Specific Tool to Assess Visuospatial Working Memory. *Front. Aging Neurosci.* **2015**, *7*, 53. [\[CrossRef\]](#) [\[PubMed\]](#)

56. Scharre, D.W.; Chang, S.I.; Nagaraja, H.N.; Vrettos, N.E.; Bornstein, R.A. Digitally Translated Self-Administered Gerocognitive Examination (eSAGE): Relationship with Its Validated Paper Version, Neuropsychological Evaluations, and Clinical Assessments. *Alzheimers Res. Ther.* **2017**, *9*, 44. [\[CrossRef\]](#)

57. Shigemori, T.; Harbi, Z.; Kawanaka, H.; Hicks, Y.; Setchi, R.; Takase, H.; Tsuruoka, S. *Feature Extraction Method for Clock Drawing Test*; Ding, L., Pang, C., Kew, L., Jain, L., Howlett, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 60, pp. 1707–1714.

58. Sloane, K.L.; Mefford, J.A.; Zhao, Z.; Xu, M.; Zhou, G.; Fabian, R.; Wright, A.E.; Glenn, S. Validation of a Mobile, Sensor-Based Neurobehavioral Assessment with Digital Signal Processing and Machine-Learning Analytics. *Cogn. Behav. Neurol.* **2022**, *35*, 169–178. [\[CrossRef\]](#) [\[PubMed\]](#)

59. Suzumura, S.; Osawa, A.; Maeda, N.; Sano, Y.; Kandori, A.; Mizuguchi, T.; Yin, Y.; Kondo, I. Differences among Patients with Alzheimer’s Disease, Older Adults with Mild Cognitive Impairment and Healthy Older Adults in Finger Dexterity. *Geriatr. Gerontol. Int.* **2018**, *18*, 907–914. [\[CrossRef\]](#)

60. Tamura, T.; Tshji, M.; Higashi, Y.; Sekine, M.; Kohdabashi, A.; Fujimoto, T.; Mitsuyama, M. New Computer-Based Cognitive Function Test for the Elderly. *Conf. Proc. IEEE Eng. Med. Biol. Soc.* **2006**, *1*, 692–694.

61. Wilks, H.; Aschenbrenner, A.; Gordon, B.; Balota, D.; Fagan, A.; Musiek, E.; Balls-Berry, J.; Benzinger, T.; Cruchaga, C.; Morris, J.; et al. Sharper in the Morning: Cognitive Time of Day Effects Revealed with High-Frequency Smartphone Testing. *J. Clin. Exp. Neuropsychol.* **2021**, *43*, 825–837. [\[CrossRef\]](#)

62. Wong, A.; Fong, C.-H.; Mok, V.C.-T.; Leung, K.-T.; Tong, R.K.-Y. Computerized Cognitive Screen (CoCoSc): A Self-Administered Computerized Test for Screening for Cognitive Impairment in Community Social Centers. *J. Alzheimers Dis.* **2017**, *59*, 1299–1306. [\[CrossRef\]](#)

63. Wu, J.; Tu, J.; Liu, Z.; Cao, L.; He, Y.; Huang, J.; Tao, J.; Wong, M.N.K.; Chen, L.; Lee, T.M.C.; et al. An Effective Test (EOmcISS) for Screening Older Adults with Mild Cognitive Impairment in a Community Setting: Development and Validation Study. *J. Med. Internet Res.* **2023**, *25*, e40858. [\[CrossRef\]](#)

64. Wu, Y.-H.; Vidal, J.-S.; de Rotrou, J.; Sikkes, S.A.M.; Rigaud, A.-S.; Plichart, M. Can a Tablet-Based Cancellation Test Identify Cognitive Impairment in Older Adults? *PLoS ONE* **2017**, *12*, e0181809. [\[CrossRef\]](#) [\[PubMed\]](#)

65. Yamada, Y.; Kobayashi, M.; Shinkawa, K.; Nemoto, M.; Ota, M.; Nemoto, K.; Arai, T. Automated Analysis of Drawing Process for Detecting Prodromal and Clinical Dementia. In Proceedings of the 2022 IEEE International Conference on Digital Health (ICDH), Barcelona, Spain, 11–15 July 2022; pp. 1–6.

66. Ye, S.; Sun, K.; Huynh, D.; Phi, H.Q.; Ko, B.; Huang, B.; Hosseini Ghomi, R. A Computerized Cognitive Test Battery for Detection of Dementia and Mild Cognitive Impairment: Instrument Validation Study. *JMIR Aging* **2022**, *5*, e36825. [\[CrossRef\]](#) [\[PubMed\]](#)

67. Zhao, K.; Yoshizumi, T.; Ota, M.; Ekoyama, S.; Arai, T. Development of Cognitive Level Estimation Model Using Mobile Applications. *Alzheimer’s Dement.* **2019**, *15*, 957–958. [\[CrossRef\]](#)

68. Zygouris, S.; Giakoumis, D.; Votis, K.; Doumpoulakis, S.; Ntovas, K.; Segkouli, S.; Karagiannidis, C.; Tzovaras, D.; Tsolaki, M. Can a Virtual Reality Cognitive Training Application Fulfill a Dual Role? Using the Virtual Supermarket Cognitive Training Application as a Screening Tool for Mild Cognitive Impairment. *J. Alzheimers Dis.* **2015**, *44*, 1333–1347. [\[CrossRef\]](#)

69. Zygouris, S.; Iliadou, P.; Lazarou, E.; Giakoumis, D.; Votis, K.; Alexiadis, A.; Triantafyllidis, A.; Segkouli, S.; Tzovaras, D.; Tsatsos, T.; et al. Detection of Mild Cognitive Impairment in an At-Risk Group of Older Adults: Can a Novel Self-Administered Serious Game-Based Screening Test Improve Diagnostic Accuracy? *J. Alzheimers Dis.* **2020**, *78*, 405–412. [\[CrossRef\]](#)

70. Morrison, R.; Pei, H.; Novak, G.; Kaufer, D.; Welsh-Bohmer, K.; Ruhmel, S.; Narayan, V.A. Validation of a Novel Computerized Selfadministered Memory-Screening Test with Automated Reporting (SAMSTAR) in Patients with Mild Cognitive Impairment and Normal Control Participants: A Randomized, Crossover, Controlled Study. *Neuropsychopharmacology* **2016**, *41*, S345–S346. [\[CrossRef\]](#)

71. Yu, N.-Y.; Chang, S.-H. Characterization of the Fine Motor Problems in Patients with Cognitive Dysfunction—A Computerized Handwriting Analysis. *Hum. Mov. Sci.* **2019**, *65*, 71–79. [\[CrossRef\]](#)

72. Um Din, N.; Maronnat, F.; Pariel, S.; Badra, F.; Belmin, J. A Digital Clock Drawing Test on Tablet for the Diagnosis of Neurocognitive Disorders in Older Adults. *Stud. Health Technol. Inform.* **2024**, *316*, 1878–1882. [\[CrossRef\]](#)

73. Liu, L.-Y.; Xing, Y.; Zhang, Z.-H.; Zhang, Q.-G.; Dong, M.; Wang, H.; Cai, L.; Wang, X.; Tang, Y. Validation of a Computerized Cognitive Training Tool to Assess Cognitive Impairment and Enable Differentiation Between Mild Cognitive Impairment and Dementia. *J. Alzheimers Dis.* **2023**, *96*, 93–101. [\[CrossRef\]](#)

74. Li, A.; Li, J.; Chai, J.; Wu, W.; Chaudhary, S.; Zhao, J.; Qiang, Y. Detection of Mild Cognitive Impairment Through Hand Motor Function Under Digital Cognitive Test: Mixed Methods Study. *JMIR Mhealth Uhealth* **2024**, *12*, e48777. [\[CrossRef\]](#)

75. Zhang, X.; Lv, L.; Shen, J.; Chen, J.; Zhang, H.; Li, Y. A Tablet-Based Multi-Dimensional Drawing System Can Effectively Distinguish Patients with Amnestic MCI from Healthy Individuals. *Sci. Rep.* **2024**, *14*, 982. [[CrossRef](#)]

76. An, D.; Shin, J.S.; Bae, N.; Seo, S.W.; Na, D.L. Validity of the Tablet-Based Digital Cognitive Test (SCST) in Identifying Different Degrees of Cognitive Impairment. *J. Korean Med. Sci.* **2024**, *39*, e247. [[CrossRef](#)]

77. Li, A.; Xue, C.; Wu, R.; Wu, W.; Zhao, J.; Qiang, Y. Unearthing Subtle Cognitive Variations: A Digital Screening Tool for Detecting and Monitoring Mild Cognitive Impairment. *Int. J. Hum. Comput. Interact.* **2025**, *41*, 2579–2599. [[CrossRef](#)]

78. Rigby, T.; Gregoire, A.M.; Reader, J.; Kahsay, Y.; Fisher, J.; Kairys, A.; Bhaumik, A.K.; Rahman-Filipiak, A.; Maher, A.C.; Hampstead, B.M.; et al. Identification of Amnestic Mild Cognitive Impairment among Black and White Community-Dwelling Older Adults Using NIH Toolbox Cognition Tablet Battery. *J. Int. Neuropsychol. Soc.* **2024**, *30*, 689–696. [[CrossRef](#)] [[PubMed](#)]

79. Mychajliw, C.; Holz, H.; Minuth, N.; Dawidowsky, K.; Eschweiler, G.W.; Metzger, F.G.; Wortha, F. Performance Differences of a Touch-Based Serial Reaction Time Task in Healthy Older Participants and Older Participants with Cognitive Impairment on a Tablet: Experimental Study. *JMIR Aging* **2024**, *7*, e48265. [[CrossRef](#)] [[PubMed](#)]

80. Park, J.-H. Discriminant Power of Smartphone-Derived Keystroke Dynamics for Mild Cognitive Impairment Compared to a Neuropsychological Screening Test: Cross-Sectional Study. *J. Med. Internet Res.* **2024**, *26*, e59247. [[CrossRef](#)] [[PubMed](#)]

81. Thompson, L.I.; Kunicki, Z.J.; Emrani, S.; Strenger, J.; De Vito, A.N.; Britton, K.J.; Dion, C.; Harrington, K.D.; Roque, N.; Salloway, S.; et al. Remote and In-Clinic Digital Cognitive Screening Tools Outperform the MoCA to Distinguish Cerebral Amyloid Status among Cognitively Healthy Older Adults. *Alzheimers Dement.* **2023**, *15*, e12500. [[CrossRef](#)]

82. Nurgalieva, L.; Jara Laconich, J.J.; Baez, M.; Casati, F.; Marchese, M. A Systematic Literature Review of Research-Derived Touchscreen Design Guidelines for Older Adults. *IEEE Access* **2019**, *7*, 22035–22058. [[CrossRef](#)]

83. McInnes, M.D.; Moher, D.; Thombs, B.D.; McGrath, T.A.; Bossuyt, P.M.; Clifford, T.; Cohen, J.F.; Deeks, J.J.; Gatsonis, C.; Hooft, L.; et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: The PRISMA-DTA statement. *JAMA* **2018**, *319*, 388–396. [[CrossRef](#)]

84. Berron, D.; Glanz, W.; Clark, L.; Basche, K.; Grande, X.; Güsten, J.; Billette, O.V.; Hempen, I.; Naveed, M.H.; Diersch, N.; et al. A Remote Digital Memory Composite to Detect Cognitive Impairment in Memory Clinic Samples in Unsupervised Settings Using Mobile Devices. *npj Digit. Med.* **2024**, *7*, 79. [[CrossRef](#)]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.