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Abstract

Case-based prediction (CBP) methods do not learn
a model of the target decision function but instead
perform an inference process that depends on two
similarity measures and a reference case base. This
paper proposes a strategy, called EnergyCompress,
to learn an effective case base by selecting relevant
cases from an initial set. Use of EnergyCompress
decreases CBP inference time, through case base
compression, and also increases prediction perfor-
mance, for a wide variety of CBP algorithms. Ener-
gyCompress relies on a general formulation of the
CBP task in the framework of energy-based mo-
dels, which leads to a new and valuable characte-
rization of the notion of competence in case-based
reasoning, in particular at the source case level.
Extensive experimental results on 18 benchmarks
comparing EnergyCompress to 5 reference algo-
rithms for case base maintenance support the bene-
fit of the proposed strategy.1

1 Introduction
Case-based prediction (CBP) methods, such as the k nea-
rest neighbor (k-NN) classifier, the AP -classifier [Bounhas et
al., 2017] or CoAT [Badra, 2020], are kernel-based learning
methods, insofar as they crucially depend on the choice of a
similarity or distance function that takes a case base as a pa-
rameter. These methods do not learn a model of the entire de-
cision function prior to prediction, but instead infer the deci-
sion function value for a new case by direct comparison with
similar cases retrieved from the case base. This inference
process depends on three parameters θ = (σS , σR, CB): the
similarity measures in the input (resp. output) space σS ,
(resp. σR), and the case base CB. The σR measure is usu-
ally fixed depending on the task at hand (e.g. classification or
regression), but σS and CB have huge ranges of possibilities.

Traditionally, knowledge-based methods were used to de-
rive similarity measures for a given case base [Kolodner and

1Code for reproducing the experiments is available at: https://
github.com/EMarquer/MeATCube/tree/maintenance benchmark
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Figure 1: Sculpting the decision frontier by removing cases using
EnergyCompress: improving both accuracy and inference time
through case base compression (Iris dataset, 2D PCA projection).

Leake, 1996]. In the machine learning community, the me-
tric learning task [Ghojogh et al., 2022] addresses a similar
issue, although in a different context, and recent case-based
reasoning (CBR) research applies machine learning methods
to learning similarity [Mathisen et al., 2019]. This paper pro-
poses taking the reverse approach: rather than assuming the
case base is given and generating a similarity measure for it,
it introduces a method, EnergyCompress, that learns a case
base by starting from a candidate case base and selecting an
appropriate subset for a given similarity measure. This can
be seen as relating to Richter’s [2003] observation that CBR
involves multiple knowledge containers, including similarity
and case knowledge, interacting such that one can compen-
sate for the other, e.g., here, that a well-chosen case base can
compensate for a suboptimal similarity measure.

The case base selection task has been studied extensively
in case based reasoning research on case base maintenance by
compression, which selects subsets of an original case base to
retain (e.g. [Juarez et al., 2018], see more details in Sec. 2).

https://github.com/EMarquer/MeATCube/tree/maintenance_benchmark
https://github.com/EMarquer/MeATCube/tree/maintenance_benchmark


However, such work usually makes the implicit assumption
that a “bigger is better” for prediction accuracy: research on
case-base compression generally aims at other benefits, such
as increased efficiency. In contrast, EnergyCompress enables
sculpting the decision frontier by removing cases to increase
accuracy, in addition to compressing to reduce the inference
time. Thus, in contrast to most existing approaches, it does
not sacrifice one for the other. This is illustrated in Fig. 1,
whick shows the decision regions obtained for the Iris dataset,
on a 2D PCA projection, for three CBP algorithms (CoAT,
CtCoAT and 3-NN, see their descriptions in Sec. 4, based on
the Euclidean distance) and SVM with a radial basis function
(width = 6.4×10−2). Both rows show the prediction regions
and their associated accuracy computed on the whole case
base, CB0. For each CBP algorithm, the left figure shows the
results when the inference algorithm uses the whole case base
CB0 while, on the right figure, it only uses CBf , extracted
from CB0 by EnergyCompress. Here EnergyCompress leads
to a different decision frontier that achieves a higher accuracy
on CB0, for all 4 algorithms, with smaller case bases CBf ,
(size reduction up to 90% for the 3-NN) and thus decreases
inference time.

The second main characteristic of EnergyCompress is that
it is a general method: it can be applied to virtually any CBP
algorithm, provided that the algorithm assigns a probability2

to each potential outcome, to provide a tailored case base.
Defining a single case base learning strategy applicable to dif-
ferent prediction algorithms remedies one of the main limi-
tations of existing case base learning algorithms, which are
dedicated to specific approaches (often to k-NN, see Sec. 2,
or to CoAT [Marquer et al., 2023] ) .

EnergyCompress relies on an original formulation of the
CBP task in the framework of energy-based models [LeCun
et al., 2006]. This formulation offers a new and valuable
characterization of the notion of competence, in particular at
the source case level. The case base learning method then
consists of removing cases from a candidate set so as to learn
the underlying energy function. This constitutes a generaliza-
tion of the approach proposed by [Marquer et al., 2023] for
the specific case of the CoAT algorithm.

The contributions of the paper thus include a general case
base learning strategy, that can be applied to a large vari-
ety of case-based prediction algorithms and that enables both
decreasing inference time and increasing prediction perfor-
mance, without sacrificing one for the other. Extensive ex-
periments run on 18 UCI datasets demonstrate that Energy-
Compress obtains very competitive compression ratios while
leading to an accuracy (given in %) increase on average of
+7.4 for k-NN, +13.3 for CoAT, +26.5 for CtCoAT, and
+3.7 for SVM RBF. Although we focus in this paper on the
selection of instances to include in the case base, the experi-
mental results also support that the indicators we define lead
to a valuable characterization of the competence notion (see
Sec. 3.2 for a discussion).

The paper is organized as follows. Sec. 2 discusses re-

2If a CBP algorithm assigns a support to each potential outcome
instead of a probability, a probability can be computed as the ratio
of the support for each outcome compared to the total support.

lated work, both in the domains of case-based prediction and
energy-based machine learning. Sec. 3 describes the pro-
posed EnergyCompress strategy, discussing the energy-based
formulation of CBP and presenting the induced general com-
petence model as well as the proposed case base learning
strategy. Sec. 4 shows how this general case base learning
strategy can be implemented for different CBP algorithms.
Sec. 5 presents the experimental study of the approach. Fi-
nally, Sec. 6 concludes the paper and discusses future work.

2 Related Work
This section discusses the position of the EnergyCompress
method with respect to related works, both with respect to
case-based prediction and energy-based learning.

Case-based prediction. Case-based reasoning (CBR) re-
lates to the cognitive ability of analogical reasoning and mo-
dels a special kind of plausible inference principle, accor-
ding to which if two situations are judged similar, then it is
plausible that they will also have similar outcomes, described
in CBR by the phrase “similar problems have similar solu-
tions” [Anthony and Ratsaby, 2015; Leake and Wilson, 1999,
inter alia]. Case-based prediction (CBP) algorithms imple-
ment such a transfer step for prediction tasks, which corres-
ponds to applying analogical reasoning to classification or re-
gression tasks in machine learning. In CBP methods, ana-
logical transfer is used to complete the description of a new
case by direct comparison with similar cases. A recent re-
view of the literature on case-based prediction [Badra and
Lesot, 2023] shows that all surveyed implementations of the
inference process share a common principle: they optimize
a transfer of similarity knowledge, from the situation space
to the outcome space. The predicted outcome is the one that
optimizes a measure of compatibility between two similarity
measures on a case base, following the plausible inference
principle stated above. The compatibility measure can take
the form of a joint similarity measure, a set of continuity con-
straints, a set of rules or a global indicator. In this paper, we
focus on the approaches that optimize a global indicator com-
puted on the whole case base, showing in Sec. 3.1 that their
inference process can then be interpreted as an energy-based
inference.

The notations used throughout the paper are as follows:
S denotes the input space, and R the output space, respec-
tively equipped with the similarity measures σS and σR. An
element of S is called a situation, and an element of R an
outcome, or a result. A set CB = {(s1, r1), . . . , (sn, rn)} of
elements in S × R is called a case base. An element ci =
(si, ri) ∈ CB is called a source case. Let Tref ⊂ S×R be a
set of cases called a reference set, and ct = (st, rt) ∈ Tref be
a reference case. A potential case (st, r̂) can be constructed
from a reference case by associating to the same situation
st ∈ S , a different outcome r̂ ∈ R, r̂ ̸= rt. Let us de-
note by Predθ a CBP algorithm and θ = (σS , σR, CB) its
parameters. The predicted outcome r∗ = Predθ(st) for a
new situation st is the one that makes the new similarity re-
lations σR(ri, r

∗) most compatible with the new similarity
relations σS(si, st).



Case base maintenance. Research in case-base mainte-
nance has a long history (see [Juarez et al., 2018] for a
survey). The origins date back to early work on case se-
lection in the context of the condensed nearest neighbor al-
gorithm (CNNR [Hart, 1968]), which aimed at selecting a
subset of the initial set of cases still sufficient for k-NN
to generate a correct categorization. This process is com-
monly referred to as compressing the case base. Focuses
of case-base maintenance include increasing prediction ac-
curacy, e.g., by removing noisy cases, and removing un-
necessary cases to increase the efficiency of source case re-
trieval [Cummins, 2013]. Much research concerns compe-
tence models and competence-based deletion, which priori-
tizes removal of cases that make the least contribution to over-
all coverage, considering both their coverage (cases for which
they can provide a solution) and reachability (whether they
could be solved using other cases) [Smyth and McKenna,
2001]. The aim is to compress the case base while minimi-
zing competence loss; the “gold standard” for performance is
the full case base. These methods depend on the “representa-
tiveness assumption” that existing cases are a good proxy for
future cases, to assess their contributions; the proposed Ener-
gyCompress method can accommodate this assumption, but
does not depend on it3. Besides pioneering algorithms such as
RENN [Tomek, 1976] or IB3 [Aha et al., 1991], a recent lite-
rature review on instance selection for automatic text classi-
fication [Cunha et al., 2023] shows that recent density-based
algorithms such as LSSm [Leyva et al., 2015] or XLDIS [Car-
bonera, 2017] are also effective in retaining accuracy while
reducing the training set size and the training process time by
discarding noisy or redundant instances.

Relationship to the knowledge containers perspective in
CBR. The knowledge of CBR systems is often viewed in
terms of a set of four “knowledge containers” [Richter, 2003]:
the case base, the case vocabulary,4 similarity knowledge and
case adaptation knowledge, with strengths in one able to com-
pensate for weaknesses in others. For example, having a bet-
ter case base, with better coverage, may compensate for weak
case adaptation knowledge. However, the value of knowledge
cannot be judged in isolation; the harmonization of compo-
nents such as similarity and adaptation knowledge strongly
affects performance [Leake and Ye, 2021]. Much research
focuses on acquiring similarity knowledge for a given case
base (e.g.,[Mathisen et al., 2019]). The work in this paper
investigates the contrasting approach of starting from a given
similarity measure and selecting a good case base for it.

Energy-based models. This section briefly summarizes the
basics of the energy-based framework the paper uses to pro-
vide an original solution to the above-mentioned case-base
maintenance issues. Inspired by statistical physics, energy-

3In Sec. 3.2 we define the competence used by EnergyCompress,
measured on a set Tref of cases distinct from the case base CB.
Under the representativeness assumption, we can have Tref = CB
as CB is representative of the distribution of cases.

4Richter defines the vocabulary of “a knowledge representation
system [as] which data structures and which elements of the struc-
tures are used to represent primitive notions.” Generally (and here)
the attribute-value representation is used, typically in tabular form.

based models [LeCun et al., 2006] specify a probability distri-
bution p(x; θ) = e−Eθ(x)/

∫
e−Eθ(x)dx via a parameterized

scalar-valued function Eθ(x) called an energy function. In
its conditional version, the function Eθ : X × Y −→ R
associates each pair (x, y) ∈ X × Y with a scalar value
Eθ(x, y) that represents the compatibility between the in-
put x and the output y under the set of parameters θ. The
energy function Eθ takes low values when y is compatible
with x, and higher values when y and x are less compati-
ble. The goal of the energy-based inference is to find, among
a set of outputs Y , the output y∗ ∈ Y that minimizes the
value of the energy function: y∗ = argminy∈Y Eθ(x, y).
Given a family of energy functions Eθ(x, y) indexed by a set
of parameters θ, the goal of learning the energy function is
to optimize the θ parameters in order to “push down” (i.e.,
assign lower energy values to) the points on the energy sur-
face that are around the training samples, and to “pull up”
all other points. Contrastive divergence [Hinton et al., 2006]
is a common learning strategy that, given a numerical hy-
perparameter λ, optimizes a contrastive loss function such
as the hinge loss, which is defined, for a training sample
(xk, yk) and a generated out of distribution sample (xk, ŷ) by:
ℓ(θ, xk, yk, ŷ) = max(0, λ + Eθ(xk, yk) − Eθ(xk, ŷ)). The
hinge loss associates a loss value to a training sample (xk, yk)
whenever its energy is not lower by at least a margin λ than
the energy of the incorrect sample (xk, ŷ). In CBR terms, the
inputs X correspond to the situations S , and the outputs Y
to the outcomes R. If we associate CBP algorithms with an
energy function Eθ (we explain how in Sec. 4), the hinge loss
associated with a case (sk, rk) and Eθ can be measured. This
serves as the foundation for the competence measure we pro-
pose in Sec. 3.2.

3 EnergyCompress
In order to solve the problem of learning an appropriate case
base for a given CBP algorithm with chosen similarity mea-
sures σS , σR, the proposed EnergyCompress strategy relies
on an energy-based model of CBP. The general model is des-
cribed in Sec. 3.1 below, its implementation for four reference
specific algorithms is detailed in Sec. 4. This section then
describes the induced competence model, which leads to the
proposed case base learning strategy.

3.1 An Energy-Based Model
A core idea proposed in [Marquer et al., 2023] is that an in-
ference process that optimizes a global indicator of compati-
bility between two similarity measures on a case base can be
interpreted as an energy-based inference.

The input space X is the situation space S and the out-
put space Y is the outcome space R. The energy function
EPred

θ : S × R −→ R measures, for Predθ, the compatibi-
lity of the outcome similarities with the added situation simi-
larities when a potential new case ĉt = (st, r̂) is added to the
case base. We propose to extend this definition to compute
the energy of a set A ⊂ S ×R of cases by taking

EPred
θ (A) =

∑
ct=(st,rt)∈A

EPred
θ (st, rt).



The goal of the energy-based inference is to find, among
the set of potential outcomes r̂ ∈ R, the outcome that mini-
mizes the energy function, i.e.,

r∗ = Predθ(st) = argmin
r̂∈R

EPred
θ (st, r̂). (1)

The energy function EPred
θ is learned by minimizing on

a reference set Tref the loss L =
∑

ct=(st,rt)∈Tref
ℓ(θ, ct),

where ℓ is defined by:

ℓ(θ, ct) = max(0, λ+ EPred
θ (st, rt)−min

r̂ ̸=rt
EPred

θ (st, r̂)).

3.2 A General Competence Model
The notions of competence of a case or of a case base, and of
the influence of a case on the prediction, can be captured in
an energy-based framework. Let us denote by D ⊆ S ×R a
set of instances, and (x, y) ∈ D an instance of D.

Let Predθ with θ = (σS , σR, CB) be a CBP algorithm
that can be expressed as an energy-based inference, i.e., that
satisfies Eq. 1 for some energy function EPred

θ . The compe-
tence of a case base CB is measured w. r. t. a given reference
set Tref by taking the (opposite of) the hinge loss on Tref :

C(θ, Tref ) = − 1

|Tref |
∑

ct∈Tref

ℓ(θ, ct). (2)

The competence of a source case c = (s, r) ∈ CB w. r. t.
a reference set Tref can be defined as the loss of competence
that would happen if this source case was deleted from CB:

C(c, θ, Tref ) = C(θ, Tref )− C((σS , σR, CB \ {c}), Tref ).

This definition also allows defining a notion of competence
locally as the contribution of c on each individual reference
case ct ∈ Tref of the reference set:

influenceθ(c, ct) = ℓ(θ, ct)− ℓ((σS , σR, CB \ {c}), ct).

This notion of influence of a case on the prediction can be
seen as a continuous counterpart of the popular notion of
case coverage introduced in [Smyth and McKenna, 2001] for
k-NN. The influence of a case is computed here with respect
to a reference set Tref , and not to the case base CB. The
case influences are aggregated to measure the competence of
a case base on the whole reference set, as well as the com-
petence of each source case. In this paper, we focus on the
application of this competence model to learn the most com-
petent case base for a given prediction algorithm Predθ.

3.3 The Case Base Learning Strategy
The case base learning strategy consists in iteratively deleting
the least competent source case from a candidate set CB0.
As the competence of a case base is defined directly from the
loss function of the underlying energy-based model (Eq. 2),
selecting the most competent case base enables learning the
energy function EPred

θ by optimizing the CB parameter. The
EnergyCompress case deletion procedure is described by Al-
gorithm 1: at each iteration, the source case that contributes
least to the competence of the case base CB w.r.t. the refe-
rence set Tref is deleted from the case base (line 11). In this

Algorithm 1 EnergyCompress case deletion procedure.
C(c, θ, Tref ) depends on Pred and the associated EPred

θ .

1: function ENERGY COMPRESS(σS , σR, CB0, Tref )
2: CB = CB0

3: max acc = −1
4: repeat
5: θ = (σS , σR, CB)
6: acc = Acc(Predθ(Tref ))
7: if acc ≥ max acc then
8: max acc = acc
9: θf = θ

10: end if
11: CB = CB \ {argminc∈CB C(c, θ, Tref )}
12: until |CB| = 0
13: return θf
14: end function

algorithm, the returned parameter θf = (σS , σR, CBf ) is
the one that maximizes accuracy (function Acc, line 6) on the
reference set Tref . The computational complexity of Energy-
Compress is in O(|CB| × |Tref | × |R|)×O(E), where E is
the computational complexity of the energy computation.

4 Application to Various CBP Algorithms

For EnergyCompress to be applicable to a given CBP algo-
rithm Predθ, the only requirement is that Predθ can be ex-
pressed as an energy-based inference, i.e., as an algorithm
that predicts the outcome that minimizes an energy function
EPred

θ (Eq. 1). We show in this section that each of the four
CBP algorithms CoAT, CtCoAT, k-NN, and the AP-Classifier
can be expressed as minimizing an energy function. Tab. 1
gives examples of such energy functions.

CoAT. The CoAT case-based prediction algorithm was in-
troduced in [Badra, 2020] and formulated in an energy-based
model in [Marquer et al., 2023]. Its energy function ECoAT

θ ,
reported in Tab. 1, simply counts the number of new triplets
that are not ordered in the same way by σS and by σR.

CtCoAT. The CtCoAT algorithm is a variant of the CoAT
case-based prediction algorithm that we introduce in this
paper. Its energy function ECtCoAT

θ is a continuous ver-
sion of the CoAT energy function where in a classifica-
tion setting, each positive triplet (i.e., a triplet (i, j, k)
such that σR(ri, rj) = σR(ri, rk)) contributes 1

2 and
each negative triplet (such that σR(ri, rj) ̸= σR(ri, rk))
contributes to a value between 0 (easy negatives) and 1
(hard negatives). When σR(ri, rj) < σR(ri, rk), if
σS(si, sj) ≥ σS(si, sk) (hard negative), then 1

2 (1 −
[σS(si, sj) − σS(si, sk)][σR(ri, rj) − σR(ri, rk)]) ∈ [ 12 , 1]

and the triplet greatly increases the energy, as in ECoAT
θ un-

der the same conditions. If σS(si, sj) < σS(si, sk) then the
contribution of (i, j, k) is in [0, 1

2 [ (easy negative), and the
triplet has a low contribution to the energy.



Prediction algorithm (Predθ) Energy function EPred
θ (st, r̂)

CoAT
ECoAT

θ (st, r̂) = Γ(σS , σR, CB ∪ {(st, r̂)})− Γ(σS , σR, CB),
where Γ(σS , σR, CB) =| {((s0, r0), (si, ri), (sj , rj)) ∈ CB3 such that

σS(s0, si) ≥ σS(s0, sj) and σR(r0, ri) < σR(r0, rj)} |

CtCoAT
ECtCoAT

θ (st, r̂) = ΓCt(σS , σR, CB ∪ {(st, r̂)})− ΓCt(σS , σR, CB), where
ΓCt(σS , σR, CB) = 1

2

∑
i,j,k 1− [σS(si, sj)− σS(si, sk)][σR(ri, rj)− σR(ri, rk)]

k-NN EkNN
θ (st, r̂) = 1− 1

|CB|

∑
(si,ri)∈CB

1k
σS(st,·)(si)× σR(ri, r̂)

AP-Classifier EAP
θ (st, r̂) = 1− 1

|CB|

∑
(si,ri)∈CB

σS(st, si)× σR(ri, r̂)

Probabilistic model:
argmaxr̂∈R P (r|st) EP

θ (st, r̂) = 1− P (r̂|st)

Table 1: Examples of energy functions that can be learned by EnergyCompress.

k nearest neighbors (k-NN) alg. The k-NN decision func-
tion can be written as r∗ = argmaxr̂∈R χθ(st, r̂), where

χθ(st, r̂) =
∑

(si,ri)∈CB

1k
σS(st,·)(si)× σR(ri, r̂)

is a joint similarity measure that measures the compatibility
of σS with σR on CB. In this expression, 1k

σS(si,·)(s) returns
1 if s belongs to the set of k nearest neighbors of st. The
energy function EkNN

θ measures the incompatibility of σS
with σR on CB according to χθ: its value is 1 if σS and σR
are incompatible, and then decreases as χθ increases.

Analogical proportion-based classifiers. Analog-
ical proportion-based classifiers (see e.g. [Boun-
has and Prade, 2024; Couceiro et al., 2017;
Couceiro et al., 2018]) can be modeled as special
CBP algorithms that reason on similar differences be-
tween instances [Badra and Lesot, 2022]. The case
base CB = {ci = (si, ri)} is constructed from all
pairs (a, b) of instances of a set of instances D, i.e.,
ci = (si, ri) = (a − b, f(a) − f(b)) where f(a) is the
outcome of a. A new instance (x, ŷ) added to D leads
to a set of |D| potential new cases ĉt = (st, r̂) with
ĉt = (st, r̂) = (c − x, f(c) − ŷ), formed by taking all
possible triples (a, b, c) from D. The similarity measures
σS and σR are chosen such that σS(a − b, c − x) = 1 iff
a : b :: c : x holds, and σR(f(a) − f(b), f(c) − ŷ) = 1
iff f(a) : f(b) :: f(c) : ŷ holds. The transfer strategy
is rule-based, and consists in predicting for a new x the
value y∗ that maximizes the number of times that the rule
(σS ≈ 1) → (σR = 1) can be triggered to derive y∗. This
means that the prediction y∗ is the one that maximizes a
compatibility measure χθ(st, r̂) that counts for each potential
outcome r̂ the number of new pairs of cases (ci, ĉt) for which
σR(ri, r̂) = 1 and σS(si, st) ≈ 1. The AP-Classifier [Boun-
has et al., 2017] implements this transfer strategy by adding
up, for each potential new case ĉt = (st, r̂), the similarity
values σS(si, st) for all source cases ci = (si, ri) such
that σR(ri, r̂) = 1. The obtained energy function EAP

θ
resembles the one defined for k-NN (see Tab. 1), but needs

to be aggregated on the |D| new cases ĉt resulting from the
addition of the instance (x, ŷ). The decision function of the
AP-Classifier can be written as:

y∗ = argmin
ŷ

EAP
θ ({ĉt = (c − x, f(c)− ŷ), c ∈ D}).

Although these algorithms also maximize a global compati-
bility measure χθ and can be interpreted as implementing an
energy-based inference, they are not included in the following
experiments, due to their high computational cost.
Extension to any probability-based machine learning
model. At a very general level, predictive models that pro-
vide probabilities for each possible outcome can be inter-
preted as energy-based models. For our purposes, given
a conditional probability model P (r̂|s) that predicts r∗ =
argmaxr̂∈R P (r̂|st), we define the energy function of the
model as EP

θ (st, r̂) = 1−P (r̂|st). This definition follows the
intuitions of energy-based models: more desirable outcomes
are identified by higher probabilities and lower energies.
Support Vector Machines (SVMs). SVMs can be seen as a
specific case of the previous probability-based machine learn-
ing model. To do so, their posterior can be approximated by
Platt scaling [Platt, 1999].

5 Experiments
This section describes the experiments run to validate that
(i) EnergyCompress substantially increases the performance
of CBP algorithms for a fixed similarity measure σS , (ii) the
obtained compression ratio is competitive w.r.t. the state of
the art, (iii) the method is general, in that it both allows cap-
turing competence for a variety of CBP algorithms and learn-
ing a case base tailored for each prediction algorithm.

5.1 Protocol
The case base learning methods CNNR, ENN, XLDIS,
LSSm, IB3, and EnergyCompress were tested on 18 UCI
datasets against the prediction algorithms CoAT, CtCoAT, k-
NN (with k = 7), as well as SVMs with linear, polynomial,
and radial basis function kernels.



Dataset # instances # attributes # classes
Balance Scale 625 4 3

Br. Cancer Wisc. Diag. 569 30 2
Br. Cancer Wisc. Prog. 198 33 2

Credit Approval 690 15 2
Dermatology 366 34 6

Glass Identification 214 9 7
Haberman’s Survival 306 3 2

Heart Disease 303 14 5
Hepatitis 155 19 2

Ionosphere 351 33 2
Iris 150 4 3

Pima 768 8 2
Teach. Ass. Eval. 151 5 3

Lenses 24 4 3
Liver Disorders 345 6 2

Lung Cancer 32 56 3
Wine 178 13 3
Zoo 101 16 7

Table 2: The 18 UCI datasets used in the experiments.

The 18 datasets, listed in Tab. 2, are attribute-value datasets
with 3 to 56 attributes and 2 to 7 classes, used in a classifi-
cation setting. For each classification task, the initial param-
eters θ0 = (σS , σR, CB0) are chosen as follows. The out-
come space R is the set of class labels ri, and σR is the class
membership similarity measure, such that σR(ri, rj) = 1 if
ri = rj , and 0 otherwise. For CoAT, CtCoAT, and k-NN, the
similarity measure σS is chosen to be the decreasing func-
tion σS(si, sj) = e−d(si,sj) of the Euclidean distance d. The
SVMs use the implementation and default parameters from
scikit-learn5 to fit the kernel and to estimate the probabilities.

All pairs (Learn, Pred) are formed, where Learn ∈
{CNNR, ENN, . . .} is a case base learning method and
Pred ∈ {CoAT, CtCoAT,. . .} is a CBP algorithm. For each
pair (Learn, Pred), the learning algorithm Learn is applied
to learn CBf from the candidate base CB0, with a hinge mar-
gin λ = 0.1. The similarity measures σS and σR remain fixed
in the process, only the case base CBf is learned.

We apply 10-fold cross validation with stratified splitting.
For each dataset D, each fold is constructed by sampling three
distinct subsets CB0, Tref , and Ttest from D. The candidate
base CB0 serves as the initial case base. The reference set
Tref is used by EnergyCompress to learn CBf from CB0.
The test set Ttest is not used for learning, but only to measure
the accuracy of each CBP algorithm before and after learning
took place. The sizes for these sets are taken to be |Tref | =
|Ttest| = min(100, .2 × |D|), and |CB0| = min(50, |D| −
(|Tref |+ |Ttest|)).

Two quality criteria are considered. The accuracy increase
Acc(Predθf (Ttest))−Acc(Predθ0(Ttest)) measures the dif-
ference between the initial accuracy Acc(Predθ0(Ttest)) and
the accuracy Acc(Predθf (Ttest)) computed with the final pa-
rameters θf = (σS , σR, CBf ). The relative size |CBf |

|CB0| of the
learned case base is the ratio between the size of the learned
case base CBf and the size of the initial case base CB0.

5https://scikit-learn.org/stable/modules/generated/sklearn.svm.
SVC.html

Learn Pred Acc. increase (%) |CBf |
|CB0|

CNNR

CoAT

+6.3 ±7.9 53.6% ±12.7

ENN +5.4 ±9.1 85.7% ±18.4

XLDIS +3.8 ±5.3 62.6% ±21.5

LSSm +3.6 ±6.0 89.5% ±13.6

IB3 +1.6 ±1.8 75.7% ±13.8

EC +13.3 ±11.4 43.7%±13.4

CNNR

CtCoAT

+12.3 ±17.0 43.9% ±24.3

ENN +4.2 ±6.2 90.3% ±19.4

XLDIS +7.8 ±12.6 69.0% ±30.3

LSSm +2.4 ±4.1 92.9% ±12.6

IB3 +1.6 ±2.1 87.0% ±11.1

EC +26.5 ±18.4 72.7% ±17.3

CNNR

kNN

+2.1 ±5.7 60.2% ±12.1

ENN +1.8 ±4.0 90.3% ±15.5

XLDIS +1.4 ±4.1 86.7% ±26.4

LSSm +1.3 ±1.9 92.7% ±10.4

IB3 +1.3 ±2.4 85.8% ±15.6

EC +7.4 ±4.7 75.0% ±15.9

CNNR

SVM-linear

+3.1 ±3.6 63.0% ±9.5

ENN +2.2 ±2.3 90.2% ±10.5

XLDIS +2.0 ±3.8 78.5% ±18.6

LSSm +2.5 ±3.2 90.0% ±11.4

IB3 +2.1 ±3.0 79.9% ±9.7

EC +5.3 ±7.1 75.8% ±17.4

CNNR

SVM-poly

+2.0 ±5.1 66.2% ±9.1

ENN +1.0 ±1.2 89.7% ±8.0

XLDIS +1.4 ±2.4 77.5% ±19.4

LSSm +1.6 ±3.5 90.6% ±12.0

IB3 +1.4 ±2.6 84.2% ±13.1

EC +3.8 ±5.6 45.2% ±18.0

CNNR

SVM-rbf

+1.6 ±3.7 62.3% ±10.6

ENN +0.8 ±1.0 93.1% ±7.6

XLDIS +1.3 ±2.8 83.7% ±22.4

LSSm +1.1 ±2.3 93.0% ±12.0

IB3 +1.0 ±2.4 89.1% ±13.2

EC +3.7 ±6.0 72.9% ±17.0

Table 3: Average accuracy increase and relative case base size.

In order to study the extent to which EnergyCompress
provides case bases that are tailored for the prediction al-
gorithm using them, we apply the following protocol: for
each pair (pred1, pred2) ∈ Pred2 (i) we learn a case base
using EnergyCompress on pred1 and Tref , and (ii) we use the
learned case base to train pred2 and observe its performance
on Ttest. If the performance with the pair (pred1, pred2)
(pred1 ̸= pred2) is significantly lower than with the pairs
(pred1, pred1) and (pred2, pred2), the case base learned
with pred1 (resp. pred2) is more suitable for prediction with
pred1 (resp. pred2).

5.2 Results
Increasing performance. EnergyCompress (denoted EC in
the result table) always increased the performance of the CBP
algorithms while substantially reducing the case base size.
Tab. 3 shows the average accuracy increase and relative size
after compression obtained on the 18 UCI datasets for each

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html


case base learning method and each CBP algorithm. The
obtained accuracy increase was strictly positive for k-NN,
CoAT, and CtCoAT on all datasets. The average accuracy
increase is of +7.4 for k-NN (min 2.5, max 22.5), +13.3
for CoAT (min 3, max 39.7), and +26.5 for CtCoAT (min 8,
max 65.8). The accuracy increase is less significant for SVMs
but still always positive or null on all datasets, between 3.7%
and 5.3% in average. The reason why CtCoAT exhibits the
highest increase is probably due to the fact that for the same
similarity measure σS , the average performance of CtCoAT
is the lowest before case base learning (Tab. 4), which means
that CtCoAT starts with the highest margin of improvement.
Nonetheless, after learning, the algorithm exhibits a perfor-
mance comparable to an algorithm such as k-NN.

CBP algorithm Acc. before Acc. after

CoAT 65.8%±24.9 79.9%±15.6

CtCoAT 51.5%±25.3 78.3%±15.7

kNN 70.9%±19.1 78.4%±16.0

SVM-linear 72.1%±23.4 77.4%±17.3

SVM-poly 65.3%±21.5 69.1%±16.8

SVM-rbf 72.5%±22.7 76.2%±17.6

Table 4: Average accuracy before and after EnergyCompress.

With respect to its objective to increase accuracy, Energy-
Compress far outperforms all methods of the state of the art
for k-NN, CoAT, and CtCoAT: the accuracy increase is dou-
bled compared to other methods on average. All accuracy
increases provided in Tab. 3 and the more detailed results
given in Tab. 4 are significant, as for each row (180 exper-
iments each) the paired t-tests p-values are of the order of
10−4 or smaller, except for 5 cases where it is of the order of
10−3 (IB3 with SVM-poly, SVM-rbf, and CoAT, and XLDIS
with SVM-rbf and kNN). The gain in case base size is also
very competitive compared to the state of the art: on aver-
age EnergyCompress gives the lowest relative case base size
for CoAT and SVM-poly, and is among the three lowest case
base sizes for the other algorithms, even though in these ex-
periments, the stopping criterion for compression was chosen
to optimize accuracy on the reference set, not compression.

The results also demonstrate the generality of the approach.
EnergyCompress can be applied to a variety of prediction al-
gorithms and allows reducing the case base size (and thus,
the inference time) for all tested algorithms. The accuracy in-
crease is less significant for SVMs, however, perhaps because
SVMs are not relying that much on a complex inference pro-
cess involving the case base CB at prediction time, so tuning
the CB parameter may have less effect on their performance.

Additionally, the success of the compression process and
the increase in performance validate the proposed general
competence model. Despite not using accuracy when com-
puting the competence, for all the considered CBP ap-
proaches the cases selected for removal have a similar impact
on performance as they have on competence. This follows
what was observed for synthetic data with CoAT in [Marquer
et al., 2023], and this alignment between predictive perfor-
mance and the measure of case competence substantiates the
intuitions behind using the hinge loss to measure competence.

CoAT CtCoAT SVM-lin. SVM-poly SVM-rbf kNN
Model used for prediction

CoAT
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Figure 2: Mean accuracy over the 10 fold of cross validation on Iris,
when predicting with a different model (horizontal axis) than the one
used with EnergyCompress (vertical axis).

Additionally, the success of the compression process and the
increase in performance validates the proposed general com-
petence model.

Case base tailored learning. The case base learned by En-
ergyCompress is tailored for a given CBP algorithm. Fig. 2
illustrates this idea by showing for the Iris dataset the accura-
cies obtained according to the model used to select the cases
and the model used for prediction. The best accuracy is ob-
tained on the diagonal, when these two models coincide. The
performance drop between this diagonal and the other pairs
is significant (according to paired Student t-tests), with, for
instance, for Iris, more than 50% of pairs with p-values under
0.031, and 25% under 0.001.

6 Conclusion and Future Work
EnergyCompress is a general case-base learning strategy that
enables increasing the performance of a wide variety of case-
based prediction algorithms while reducing the size of the
case base. The obtained case base is not only smaller, but it is
also tailored for the prediction algorithm for which it has been
learned. The method is general: it can be applied to any case
base prediction algorithm, and even to training data selec-
tion for any classifier that assigns a probability (normalized
or not) to each potential outcome. The underlying energy-
based model can be leveraged to capture various competence
notions such as the competence of a case or of a case base, or
the influence of a particular case on the prediction.

We believe that the obtained results (e.g.,+7.4% accuracy
in average for the k-NN algorithm) constitute a breakthrough
because they demonstrate that the role of the case base is not
only to provide valuable knowledge on the task at hand, but
a parameter that can be learned to tune the prediction algo-
rithm to the task. These improvements were made possible
by the recent progress in the modeling of the case base in-
ference process, but work is needed to better understand this
family of algorithms (e.g.,understand why the CtCoAT algo-
rithm relies so heavily on the quality of the case base). In
this paper, σS was fixed, so the next steps will include ex-
ploring how case base compression interacts with similarity
learning for CBP. Other perspectives include testing on re-
gression scenarios, exploring alternative stopping criteria in
Algorithm 1 (e.g.,to favor the compression ratio instead of
accuracy), developing and enriching the competence model,
running a qualitative analysis of the obtained case bases.
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