
Opportunistic Adaptation Knowledge Discovery

Fadi Badra1, Amélie Cordier2, and Jean Lieber1

1 LORIA (CNRS, INRIA, Nancy Universities)
BP 239, 54506 Vandœuvre-lès-Nancy, France

{badra,lieber}@loria.fr
2 LIRIS CNRS UMR 5202, Université Lyon 1, INSA Lyon, Université Lyon 2, ECL

43, bd du 11 novembre 1918, Villeurbanne, France
Amelie.Cordier@liris.cnrs.fr

Abstract. Adaptation has long been considered as the Achilles’ heel of
case-based reasoning since it requires some domain-specific knowledge
that is difficult to acquire. In this paper, two strategies are combined in
order to reduce the knowledge engineering cost induced by the adaptation
knowledge (AK) acquisition task: AK is learned from the case base by
the means of knowledge discovery techniques, and the AK acquisition
sessions are opportunistically triggered, i.e., at problem-solving time.

1 Introduction

Case-based reasoning (CBR [6]) is a reasoning paradigm based on the reuse
of previous problem-solving experiences, called cases. A CBR system often has
profit of a retrieval procedure, selecting in a case base a source case similar to the
target problem, and an adaptation procedure, that adapts the retrieved source
case to the specificity of the target problem. The adaptation procedure depends
on domain-dependent adaptation knowledge (AK, in the following). Acquiring
AK can be done from experts or by using machine learning techniques. An
intermediate approach is knowledge discovery (KD) that combines efficient
learning algorithms with human-machine interaction.

Most of previous AK acquisition strategies are off-line: they are disconnected
from the use of the CBR system. By contrast, recent work aims at integrating
AK acquisition from experts to specific reasoning sessions: this opportunistic
AK acquisition takes advantage of the problem-solving context. This paper
presents an approach to AK discovery that is opportunistic: the KD is triggered
at problem-solving time.

The paper is organized as follows. Section 2 introduces some basic notions
and notations about CBR. Section 3 presents the CBR system T, which
constitutes the application context of the study, and motivates the need for
adaptation knowledge acquisition in this application context. Section 4 presents
the proposed opportunistic and interactive AK discovery method. In Sect. 5,
this method is applied to acquire adaptation knowledge in the context of the
T system. Section 6 discusses this approach and situates it among related
work. Section 7 concludes and presents some future work.

2 Basic Notions About CBR

In the following, problems are assumed to be represented in a language Lpb
and solutions in a language Lsol. A source case represents a problem-solving
episode by a pair (srce, Sol(srce)), in which srce ∈ Lpb is the representation of
a problem statement and Sol(srce) ∈ Lsol is the representation of its associated
solution. CBR aims at solving a target problem tgt using a set of source cases
CB called the case base. The CBR process is usually decomposed in two main
steps: retrieval and adaptation. Retrieval selects a source case (srce, Sol(srce))
from the case base such that srce is judged to be similar to tgt according to a
given similarity criterion. Adaptation consists in modifying Sol(srce) in order
to propose a candidate solution S̃ol(tgt) for tgt to the user. If the user validates
the candidate solution S̃ol(tgt), then S̃ol(tgt) is considered to be a solution
Sol(tgt) for tgt.

3 Application Context: the T System

The T system [3] is a cooking CBR system. In the cooking domain, CBR
aims at answering a query using a set of recipes. In order to answer a query,
the system retrieves a recipe in the recipe set and adapts it to produce a recipe
satisfying the query. The T system was proposed to participate to the
Computer Cooking Contest (CCC) challenge in 2008 [4]. In the CCC challenge,
queries are given in natural language and express a set of constraints that the
desired recipe should satisfy. These constraints concern the ingredients to be
included or avoided, the type of ingredients (e.g., meat or fruit), the dietary
practice (e.g., nut-free diet), the type of meal (e.g., soup) or the type of cuisine
(e.g., chinese cuisine). An example of query is: “Cook a chinese soup with leek
but no peanut oil.” Recipes are given in textual form, with a shallow XML struc-
ture, and include a set of ingredients together with a textual part describing the
recipe preparation. The T system is accessible online (http://taaable.fr).

3.1 Representation Issues

A Cooking Ontology. The system makes use of a cooking ontologyO represented
in propositional logic. Each concept ofO corresponds to a propositional variable
taken from a finite setV of propositional variables.O is mainly composed of a set
of concepts organized in a hierarchy, which corresponds, in propositional logic,
to a set of logical implications a ⇒ b. For example, the axiom leek ⇒ onions
of O states that leeks are onions.

Problem and Solution Representation. In T, a problem pb ∈ Lpb represents
a query and a solution Sol(pb) of pb represents a recipe that matches this query.
Lpb and Lsol are chosen fragments of propositional logic defined using the vo-
cabularyV introduced in the cooking ontologyO. One propositional variable is

defined inLpb andLsol for each concept name ofO and the only logical connec-
tive used in Lpb and Lsol is the conjunction ∧. For example, the representation
tgt ∈ Lpb of the query mentioned above is:

tgt = chinese ∧ soup ∧ leek ∧ ¬ peanut oil

The case base CB contains a set of recipes. Each recipe is indexed in the case
base by a propositional formula R ∈ Lsol. For example, the index R of the recipe
Wonton Soup is:

R = chinese ∧ soup ∧ green onion ∧ . . . ∧ peanut oil ∧Nothing else

Nothing else denotes a conjunction of negative literals ¬ a for all a ∈ V such that
chinese ∧ soup ∧ green onion ∧ . . . ∧ peanut oil 2O a. This kind of “closed
world assumption” states explicitly that for all propositional variable a ∈ V,
either R �O a (the recipe contains the ingredient represented by a) or R �O ¬ a
(the recipe does not contain the ingredient represented by a).

Each recipe index R represents a set of source cases: R represents the set of
source cases (srce, Sol(srce)) such that Sol(srce) = R and srce is solved by R,
i.e., srce is such that R �O srce.

Adaptation Knowledge. In T, adaptation knowledge is given by a set of
reformulations (r,Ar) in whichr is a binary relation between problems andAr is
an adaptation function associated with r [13]. A reformulation has the following
semantics: if two problems pb1 and pb2 are related by r—denoted by pb1 r pb2—
then for every recipe Sol(pb1) matching the query pb1,Ar(pb1, Sol(pb1), pb2) =

S̃ol(pb2) matches the query pb2.
In this paper, binary relations r are given by substitutions of the form σ =

α β, where α and β are literals (either positive or negative). For example, the
substitution σ = leek onions generalizes leek into onions.

Adaptation functions Ar are given by substitutions of the form Σ = A B
in which A and B are conjunctions of literals. For example, the substitution
Σ = soup ∧ pepper soup ∧ ginger states that pepper can be replaced by
ginger in soup recipes. A substitution Σ can be automatically generated from a
substitution σ: Σ = b a if σ is of the form a b and Σ = ∅ ¬ a if σ is of
the form ¬ a ∅.

The main source of adaptation knowledge is the ontology O. A substitution
σ = a b is automatically generated from each axiom a ⇒ b of O and corre-
spond to a substitution by generalization. A substitution σ = a b can be applied
to a query pb if pb �O a. σ generates a new query σ(pb) in which the propositional
variable a has been substituted by the propositional variable b. For example,
the substitution σ = leek onions is generated automatically from the axiom
leek ⇒ onions of O. σ can be applied to the query tgt to produce the query
σ(tgt) = chinese ∧ soup ∧ onions ∧ ¬ peanut oil, in which leek has been
substituted by onions. For each propositional variable a of V, an additional
substitution of the form σ = ¬ a ∅ is generated. Such a substitution can be
applied to a problem pb if pb �O ¬ a and generates a new problem σ(pb) in which

the negative literal ¬ a is removed. This has the effect to loosen the constraints
imposed on a query e.g., by omitting in the query an unwanted ingredient.
For example, the substitution ¬ peanut oil ∅ applied to tgt generates the
query σ(tgt) = chinese∧soup∧leek, in which the condition on the ingredient
peanut oil is omitted.

However, when O is the only source of adaptation knowledge, the system
is only able to perform simple adaptations, in which the modifications made
to Sol(srce) correspond to a sequence of substitutions that can be used to
transform srce into tgt. Therefore, an additional adaptation knowledge base
AKB is introduced. AKB contains a set of reformulations (σ, Σ) that capture more
complex adaptation strategies.

3.2 The CBR Process in T

Retrieval. The retrieval algorithm is based on a smooth classification algorithm on
an index hierarchy. Such an algorithm aims at determining a set of modifications
to apply to tgt in order to obtain a modified query srce that matches at least
one recipe Sol(srce) of the case base. The algorithm computes a similarity path,
which is a composition of substitutions SP = σq ◦ σq−1 ◦ · · · ◦ σ1 such that
there exists at least one recipe Sol(srce) matching the modified query srce =
σq(σq−1(. . . σ1(tgt) . . .)), i.e., such that Sol(srce) �O srce holds. Thus, a similarity
path SP can be written:

Sol(srce) �O srce
σq
←−

σq−1
←−− · · ·

σ1
←− tgt

For example, to solve the above query tgt, the system generates a similarity
path SP = σ2 ◦ σ1, with:

tgt = chinese ∧ soup ∧ leek ∧ ¬ peanut oil

σ1 = ¬ peanut oil ∅, σ2 = leek onions

srce = chinese ∧ soup ∧ onions

Sol(srce) = chinese ∧ soup ∧ green onion ∧ . . . ∧ peanut oil ∧Nothing else

In this similarity path, Sol(srce) is the propositional representation of the recipe
Wonton Soup. Since the ontology O contains the axiom green onion⇒ onions,
the modified query srce = σ2 ◦ σ1 (tgt) verifies Sol(srce) �O srce.

Adaptation. To a similarity path is associated an adaptation path AP, which is a
composition of substitutions AP = Σ1 ◦ Σ2 ◦ · · · ◦ Σq such that the modified
recipe S̃ol(tgt) = Σ1(Σ2(. . . Σq(Sol(srce)) . . .)) solves the initial query tgt, i.e.,
verifies S̃ol(tgt) �O tgt. Thus, an adaptation path AP can be written

Sol(srce)
Σq
−→

Σq−1
−−−→ · · ·

Σ1
−→ S̃ol(tgt) �O tgt

The adaptation path AP is constructed from the similarity path SP by associ-
ating a substitution Σi to each substitution σi. To determine which substitution

Σi to associate to a given substitution σi, the external adaptation knowledge
base AKB is searched first. For a substitution σi = α β, the system looks
for a substitution Σ = A B such that A �O β and B �O α. For example,
if σ2 = leek onions is used in SP and AKB contains the reformulation
(σ, Σ) with σ = σ2 and Σ = green onion leek ∧ ginger, Σ will be se-
lected to constitute the substitution Σ2 in AP since green onion �O onions
and leek ∧ ginger �O leek. If no substitution Σ is found in AKB for a given
substitution σi then Σi is generated automatically from σi.

In the previous example, AKB is considered to be empty so Σ1 and Σ2 are gen-
erated automatically from the substitutions σ1 and σ2: Σ1 = ∅ ¬ peanut oil
since σ1 = ¬ peanut oil ∅ and Σ2 = onions leek since σ2 = leek
onions. According to the axiom green onion ⇒ onions of O, the system fur-
ther specializes the substitution Σ2 into the substitution green onion leek
and the user is proposed to replace green onions by leek in the recipe Wonton
Soup and to suppress peanut oil. The generated adaptation path is AP = Σ1 ◦

Σ2 (Fig. 1), with:

Sol(srce) = chinese ∧ soup ∧ green onion ∧ . . . ∧ peanut oil ∧Nothing else
Σ2 = green onion leek, Σ1 = ∅ ¬ peanut oil

S̃ol(tgt) = chinese ∧ soup ∧ leek ∧ . . . ∧ ¬ peanut oil ∧Nothing else
tgt = chinese ∧ soup ∧ leek ∧ ¬ peanut oil

The inferred solution S̃ol(tgt) solves the initial query tgt: S̃ol(tgt) �O tgt.

srce

Sol(srce)

pb

S̃ol(pb)

tgt

S̃ol(tgt)

σ1σ2

Σ2 Σ1

Fig. 1. A similarity path and the associated adaptation path.

3.3 Why Learning Adaptation Knowledge in T?

In the version of the T system that was proposed to participate in the
CCC challenge, AKB = ∅ so adaptation knowledge is inferred from the ontology
O. The main advantage of this approach lies in its simplicity: no external source
of adaptation knowledge is needed and the system is able to propose a solution
to any target problem. However, the system’s adaptation capabilities (simple

substitutions) appear to be very limited and the user has no means to give some
feedback on the quality of the proposed adaptation.

For example, the substitutionΣ1 = ∅ ¬ peanut oil suggests to remove the
ingredient peanut oil in the retrieved recipe, but as the oil is used in this recipe
to saute the bok choy, the adapted recipe turns out to be practically unfeasible.
A better adaptation would suggest to replace peanut oil by e.g., sesame oil,
which can be modeled by the substitution Σ1 = peanut oil sesame oil. To
generate this substitution automatically, the system could for example exploit
the fact that the concepts peanut oil and sesame oil are both sub-concepts of
the concept oil in O. But still, some additional knowledge would be needed to
express the fact that peanut oil should be replaced by sesame oil, and not by olive
oil or hot chili oil, as olive oil and hot chili oil are also sub-concepts of oil
inO. Besides, the system should be aware that this substitution is recommended
only in Asian cuisine, which can be modeled by the more precise substitution
Σ1 = asian ∧ peanut oil asian ∧ sesame oil.

Furthermore, the second substitution Σ2 = green onions leek suggests
to solely replace sliced green onions by uncooked leek. But the green onion
was used in the original Wonton Soup for garniture, so the user might consider
that raw leek added as garniture alters too much the taste of a soup. A better
adaptation would consist in frying leek with e.g., tempeh and red bell pepper to
prepare the garniture. Such an adaptation can be modeled by the substitution
Σ2 = green onions leek ∧ tempeh ∧ red bell pepper. This substitution,
which reflects a cooking know-how, can hardly be generated automatically
from the ontology.

These examples show that in order to improve its adaptation capabilities, the
system would greatly benefit from the availability of a set of adaptation rules
that would capture more complex adaptation strategies. These adaptation rules
cannot be generated automatically from the ontology and need to be acquired
from other knowledge sources. These examples also show that the human expert
plays a major role in adaptation knowledge acquisition and that in the cooking
domain, adaptation rules are often highly contextual.

4 Opportunistic Adaptation Knowledge Discovery

The presented AK acquisition method combines two previous approaches of
AK acquisition. The first one was implemented in the CA system [5]
and learns AK from differences between cases by the means of knowledge
discovery techniques (section 4.1). The second one was implemented in the
IA system [8] and acquires adaptation knowledge at problem-solving time
through interactions with the user (section 4.2).

4.1 Adaptation Knowledge Discovery from the Case Base

Machine learning algorithms aim at extracting some regularities from a set
of observations. Knowledge discovery techniques combine efficient machine

learning algorithms with human-machine interaction. In [5], AK is learned from
differences between cases by the means of knowledge discovery techniques. A
set of pairs of sources cases is taken as input of a frequent itemset extraction
algorithm, which outputs a set of itemsets. Each of these itemsets can be inter-
preted as an adaptation rule. This approach of AK learning was motivated by
the original idea proposed by Kathleen Hanney and Mark T. Keane in [11], in
which the authors suggest that AK may be learned from differences between
cases. The main assumption is that the differences that occur between cases
in the case base are often representative of differences that will occur between
future problems and the case base.

To learn adaptation rules from differences between cases, representing varia-
tions between cases is essential. In [2], expressive representation formalisms are
proposed and it is shown that defining a partial order on the variation language
can help organizing the learned rules by generality.

4.2 Opportunistic and Interactive Knowledge Acquisition

Experiential knowledge, or know-how, can often be acquired on-line, when
users are using CBR tools. It is the aim of interactive and opportunistic knowl-
edge acquisition strategies to support such an acquisition. In these strategies, the
system exploits its interactions with its user to build new pieces of knowledge,
to test them and, in case of success, to retain them. Moreover, the knowledge
acquisition process is often opportunistic, i.e, triggered by a previous reasoning
failure: reasoning failures highlight missing knowledge and thus constitute a
guidance for the acquisition process. A major advantage of interactive knowl-
edge acquisition strategies is that they ensure that the user is in a favorable
context when he participates to the acquisition process. In [7], a review of inter-
active and opportunistic knowledge acquisition approaches is proposed, and
two strategies are developed. This work illustrates the efficiency of interactive
and opportunistic knowledge acquisition approaches to acquire specific knowl-
edge. On the other hand, it shows that such approaches only allow the systems
to acquire small pieces of knowledge at a time.

4.3 Combining the two Approaches

When properly used, knowledge discovery techniques may have the strong
advantage of automating a part of the knowledge acquisition process. In these
approaches, dedicated human-machine interfaces allow the expert, through
predefined interactions, to provide feedback on a set of suggestions generated
automatically by the system. The role of the expert is thus reduced to the val-
idation of a pre-selected set of knowledge pieces. The acquired knowledge is
directly usable by the system, without the need for an additional formaliza-
tion step. Automatic approaches also benefit from efficient machine learning
algorithms that can be applied, as in [2], to learn adaptation rules at different
levels of generality. However, these approaches still produce a large number of

candidate knowledge units that have to be validated by a domain expert out of
any context, which constitutes an important drawback.

Acquiring adaptation knowledge offline, i.e., independently of a particu-
lar problem-solving session, appears to be problematic. Offline AK acquisition
forces the system’s designer to anticipate the need for adaptation knowledge
in problem-solving and to acquire it in advance, which can be very tedious, if
not impossible. Offline acquisition of adaptation knowledge also makes diffi-
cult to come up with fine-grained adaptation rules, since adaptation knowledge
is often highly contextual. For example, in the cooking domain, an egg can
sometimes be substituted by 100 grams of tofu, but this adaptation rule may
be applied only to certain types of dishes, like cakes or mayonnaise, and has
proved to be irrelevant in order to adapt a mousse recipe or an omelet recipe.
Acquiring such a rule would require to circumscribe its domain of validity in
order to avoid over-generalization.

Moreover, initial acquisition of adaptation knowledge prevents the system
from learning from experience. A CBR system with fixed adaptation knowledge
has no way to improve its problem-solving capabilities, except by retaining in
the case base a new experience each time a problem has been solved, as it is
usually done in traditional CBR systems [6].

On the other hand, interactive and opportunistic knowledge acquisition
approaches heavily rely on the human expert but ensure that the expert is “in
context” when validating knowledge units that are to be acquired. Combining
knowledge discovery techniques and interactive approaches, as it is proposed
here, could overcome one of the limitations of KD by dramatically reducing the
number of candidate adaptation rules presented to the expert. By triggering the
process in an opportunistic manner, the expert is able to parametrize the KD
in order to focus on specific knowledge to acquire in context. The resulting AK
discovery process:

– is performed on-line, i.e., in the context of a problem-solving session,
– is interactive as adaptation knowledge is learned by the system through

interactions with its user who acts as an expert,
– is opportunistic as it is triggered by reasoning failure, and, consequently,

often helps repairing a failed adaptation,
– makes use of knowledge discovery techniques to provide assistance to the

user in the formulation of new knowledge: the user is presented with a set
of suggestions that are generated automatically from the case base.

5 Applying Opportunistic AK Discovery to T

In this section, an opportunistic AK discovery process is applied to the context
of the T system.

5.1 AK Discovery

In T, the AK discovery process consists in learning a set of substitutions
from the case base by comparing two sets of recipes.

The Training Set. The training set TS is formed by selecting from the case base a
set of pairs of recipes (Rk, R`) ∈ CB×CB and by representing for each selected pair
of recipes (Rk, R`) the variation ∆k` from Rk to R`. The choice of the training set
TS results from a set of interactions with the user during which he/she is asked
to formulate the cause of the adaptation failure and to pick up a repair strategy.

Representing Variations. The variation ∆k` from a recipe Rk to a recipe R` is
represented in a language L∆ by a set of properties. Three properties a-, a+

and a= are defined in L∆ for each propositional variable a of V, and ∆k` ∈ L∆
contains:

– the property a- if Rk �O a and R` 2O a,
– the property a+ if Rk 2O a and R` �O a,
– the property a= if Rk �O a and R` �O a.

For example, if:

Rk = chinese ∧ soup ∧ . . . ∧ peanut oil ∧Nothing else
R` = chinese ∧ soup ∧ . . . ∧ olive oil ∧Nothing else

then ∆k` = {chinese=, soup=, oil=, peanut oil-, olive oil+, . . .}, provided that
peanut oil �O oil, olive oil �O oil, R` 2O peanut oil and Rk 2O olive oil.

The inclusion relation ⊆ constitutes a partial order onL∆ that can be used to
organize variations by generality: a variation ∆ is more general than a variation
∆′ if ∆ ⊆ ∆′.

Mining. The learning process consists in highlighting some variations ∆ ∈ L∆
that are more general than a “large” number of elements∆k` ofTS. More formally,
let

support(∆) =
card {∆k` ∈ TS | ∆ ⊆ ∆k`}

card TS

Learning adaptation rules aims at finding the ∆ ∈ L∆ such that support(∆) ≥
σs, where σs ∈ [0; 1] is a learning parameter called the support threshold. It
can be noticed that if ∆1 ⊆ ∆2 then support(∆1) ≥ support(∆2). The support
threshold also has an influence on the number of generated variations. The
number of generated variations increases when σs decreases. Thus, specifying
a high threshold restricts the generation of variations to the most general ones,
which can limit the number of generated variations and save computation time
but has the effect to discard the most specific ones from the result set.

Each learned variation ∆ = {p1, p2, . . . , pn} ∈ L∆ is interpreted as a substitu-
tion of the form A B such that:

– A �O a and B 2O a if a- ∈ ∆,
– A 2O a and B �O a if a+ ∈ ∆,
– A �O a and B �O a if a= ∈ ∆.

For example, the variation∆ = {oil=, peanut oil-, olive oil+} is interpreted as
the substitution Σ = peanut oil olive oil. The conjunct oil is not present
neither in A nor in B since it is useless: peanut oil �O oil and olive oil �O oil.

Filtering. For a retrieved recipe Sol(srce), the result set can be filtered in order to
retain only the substitutionsΣ = A B that can be applied to modify Sol(srce),
i.e., such that Sol(srce) �O A.

Validation. Knowledge discovery aims at building a model of reality from a set
of observations. But as a model of a part of reality is only valid with respect to
a particular observer, any learned substitution has to be validated by a human
expert in order to acquire the status of piece of knowledge.

5.2 Opportunistic Adaptation Knowledge Discovery

The AK discovery process turns the case base into an additional source of
adaptation knowledge. This new source of knowledge is used during a problem-
solving session to provide the CBR system with adaptation knowledge “on
demand”. A set of variations ∆ is learned from the case base by comparing two
sets of recipes and each learned variation ∆ is interpreted as a substitution Σ
that can be used to repair the adaptation path AP. Each learned substitution
Σ is presented to the user for validation together with the corrected solution
S̃ol(tgt) resulting from its application. When the user validates the corrected
solution, a new reformulation (σ, Σ) is added to the adaptation knowledge base
AKB so that the learned substitution Σ can be later reused to adapt new recipes.
The AK discovery process is triggered either during the adaptation phase, to
come up with suggestions of gradual solution refinements (see section 5.4 for
an example), or during the solution test phase to repair a failed adaptation in
response to the user’s feedback (see section 5.5 for an example).

5.3 Implementation

To test the proposed adaptation knowledge acquisition method, a prototype
was implemented that integrates the T system [3] and the CA
system [5]. The case base contains 862 recipes taken from the CCC 2008 recipe set.
The T system is used to perform retrieval and adaptation. The CA
system is used to learn a set of substitutions Σ from the case base from the
comparison of two sets of recipes. As in [5], the mining step is performed
thanks to a frequent closed itemset extraction algorithm.

5.4 A First Example: Cooking a Chocolate Cake

An example is presented to illustrate how the case base is used as an additional
source of adaptation knowledge. The AK discovery process is parametrized
automatically and is used to provide assistance to the user by suggesting some
gradual refinements for the proposed solution.

1. Representing the Target Problem. In this example, the user wants to cook a
chocolate cake with baking chocolate and oranges. The target problem is:

tgt = cake ∧ baking chocolate ∧ orange

In the T interface, the field “Ingredients I Want” is filled in with the
tokens baking chocolate and orange and the field “Types I Want” is filled
in with the token cake.

2. Retrieval. The retrieval procedure generates the similarity path SP = σ1 in
which the substitution σ1 = baking chocolate chocolate is generated
automatically from the ontology O from the axiom baking chocolate ⇒
chocolate. SP is applied to tgt in order to produce the modified query
srce = cake∧chocolate∧orange. The system retrieves the recipe Ultralight
Chocolate Cake, whose representation Sol(srce) is:

Sol(srce) = cake ∧ cocoa ∧ orange ∧ . . . ∧Nothing else

Since the ontology O contains the axiom cocoa ⇒ chocolate, Sol(srce)
solves the query srce: Sol(srce) is such that Sol(srce) �O srce.

3. Adaptation. AKB is assumed to be empty, so to construct the adaptation path
AP, the substitution chocolate baking chocolate is generated auto-
matically from σ1. This substitution is further specialized into the substitu-
tion Σ1 = cocoa baking chocolate, according to the axiom cocoa ⇒
chocolate of O. A first solution S̃ol(tgt) is computed by applying to
Sol(srce) the adaptation path AP = Σ1. The user suggests that an ingre-
dient is missing in S̃ol(tgt) but could not identify a repair strategy. An AK
discovery is triggered in order to suggest gradual refinements of S̃ol(tgt).

4. Choosing the Training Set. The training set TS is chosen fromΣ1: AK is learned
by comparing the recipes containing cocoa with the recipes containing bak-
ing chocolate. TS is composed of the set of variations∆k` ∈ L∆ between pairs
of recipes (Rk, R`) ∈ CB × CB such that {cocoa-, baking chocolate+} ⊆ ∆k`.

5. Mining and Filtering. A value is given to the support threshold σs and the
mining step outputs a set of variations. A filter retains only the variations
that correspond to substitutions applicable to modify Sol(srce).

6. Solution Test and Validation. The user selects the learned variation
∆ = {cocoa-, baking chocolate+, oil-} from the result set. ∆ is interpreted
as the substitution Σ = cocoa ∧ oil baking chocolate, which suggests
to replace cocoa by baking chocolate in the retrieved recipe and to remove
oil. The user explains this rule by the fact that baking chocolate contains
more fat than cocoa, and therefore substituting cocoa by baking chocolate
implies to reduce the quantity of fat in the recipe.
Further solution refinements are proposed to the user. The set of learned
variations is filtered in order to retain only the substitutions∆′ that are more
specific than ∆, i.e., such that ∆ ⊆ ∆′. Among the retained variations is the
variation ∆′ = {cocoa-, baking chocolate+, oil-, vanilla-}, which is inter-
preted as the substitutionΣ′ = cocoa∧oil∧vanilla baking chocolate.
Σ′ suggests to also remove vanilla in the recipe Ultralight Chocolate Cake. The
user is satisfied with the refined solution S̃ol(tgt) resulting from the ap-
plication of the adaptation path AP = Σ′ to Sol(srce), so the reformulation
(baking chocolate chocolate, cocoa ∧ oil ∧ vanilla baking chocolate)
is added to the adaptation knowledge base AKB.

5.5 A Second Example: Cooking a Chinese Soup

A second example is presented in which the AK discovery process is triggered
in response to the user feedback in order to repair the adaptation presented in
Sect. 3. In this example, the user is encouraged to formulate the cause of the
adaptation failure. A repair strategy is chosen that is used to parametrize the
AK discovery process.

1. Representing the Target Problem. In this example, the target problem tgt is:

tgt = chinese ∧ soup ∧ leek ∧ ¬ peanut oil

In the T interface, the field “Ingredients I Want” is filled in with the
token leek, the field “Ingredients I Don’t Want” is filled in with the token
peanut oil and the field “Types I Want” is filled in with the tokens chinese
and soup.

2. Retrieval. As in Sect. 3, two substitutions σ1 = ¬ peanut oil ∅ and σ2 =
leek onions are generated automatically from the ontology O. The
similarity path SP = σ2 ◦ σ1 is applied to tgt in order to produce the
modified query srce = chinese ∧ soup ∧ onions. The system retrieves the
recipe Wonton Soup, whose representation Sol(srce) solves the query srce:
Sol(srce) is such that Sol(srce) �O srce.

3. Adaptation. Initially, AKB = ∅, so to construct the adaptation path AP, two
substitutions Σ1 = ∅ ¬ peanut oil and Σ2 = green onion leek are
automatically generated from σ1 and σ2.

4. Solution Test and Validation. The solution S̃ol(tgt) is presented to the user for
validation, together with the adaptation path AP = Σ1 ◦ Σ2 that was used to
generate it.

5. The User is Unsatisfied! The user complains that the adapted recipe is prac-
tically unfeasible because the proposed solution S̃ol(tgt) does not contain
oil anymore, and oil is needed to saute the bok choy.

6. What has Caused the Adaptation Failure? The cause of the adaptation failure
is identified through interactions with the user. The user validates the inter-
mediate solution S̃ol(pb) that results from the application of the substitution
Σ2 = green onion leek to Sol(srce). But the user invalidates the solu-
tion S̃ol(tgt) that results from the application of Σ1 = ∅ ¬ peanut oil to
S̃ol(pb). The substitution Σ1 is identified as responsible for the adaptation
failure since its application results in the removal of oil in the recipe.

7. Choosing a Repair Strategy. A repair strategy is chosen according to the user’s
feedback. The user expresses the need for oil in the adapted recipe, so
the repair strategy consists in replacing peanut oil by another oil. An AK
discovery process is triggered to decide which oil to replace peanut oil with.

8. Choosing the Training Set. A set of recipes that contain peanut oil is compared
with a set of recipes containing other types of oil. The training set TS is
composed of the set of variations∆k` ∈ L∆ between pairs of recipes (Rk, R`) ∈
CB × CB such that {oil=, peanut oil-} ⊆ ∆k`.

9. Mining and Filtering. A value is given to the support threshold σs and the
mining step outputs a set of variations. A filter retains only the variations
that correspond to substitutions applicable to modify Sol(pb).

10. Solution Test and Validation. The user selects the learned variation
∆ = {oil=, peanut oil-, olive oil+} from the result set. ∆ is interpreted as
the substitution Σ = peanut oil olive oil, which suggests to replace
peanut oil by olive oil in the retrieved recipe. The adaptation path AP = Σ ◦

Σ2 is computed and the repaired solution S̃ol(tgt) is presented to the user
for validation. The user is satisfied with the corrected solution S̃ol(tgt), so
the reformulation (∅ ¬ peanut oil, peanut oil olive oil) is added
to the adaptation knowledge base AKB.

6 Discussion and Related Work

AK acquisition is a difficult task that is recognized to be a major bottleneck for
CBR system designers due to the high knowledge-engineering costs it gener-
ates. To overcome these knowledge-engineering costs, a few approaches (e.g.,
[5, 9, 11]) have applied machine learning techniques to learn AK offline from
differences between cases of the case base. In [11], a set of pairs of source cases
is selected from the case base and each selected pair of source cases is consid-
ered as a specific adaptation rule. The featural differences between problems
constitute the antecedent part of the rule and the featural differences between
solutions constitute the consequent part. Michalski’s closing interval rule algo-
rithm is then applied to generalize adaptation rule antecedents. In [9], adapta-
tion knowledge takes the form of a set of adaptation cases. Each adaptation case
associates an adaptation action to a representation of the differences between
the two source problems. Machine learning algorithms like C4.5 or RISE are
applied to learn generalized adaptation knowledge from these adaptation cases
in order to improve the system’s case-based adaptation procedure.

When applying machine learning techniques to learn adaptation knowledge
from differences between cases, one main challenge concerns the choice of the
training set: which cases are worth comparing? Arguing that (1) the size of
the training set should be reduced to minimize the cost of the adaptation rule
generation process and that (2) the source cases that are worth comparing should
be the ones that are more similar, only the pairs of source cases that were judged
to be similar according to a given similarity measure are selected in [9] and [11].
However, committing to a particular similarity measure might be somewhat
arbitrary. Therefore, in [5], the authors decided to include in the training set
all the pairs of distinct source cases of the case base. This paper introduces a
third approach: the choice of the training set is determined interactively and
according to the problem-solving context, taking advantage of the fact that the
AK discovery process is triggered on-line. This approach appears to be very
promising since the learning algorithm can be parametrized in order to learn
only the knowledge that is needed to solve the target problem.

The examples presented above also show that knowledge discovery tech-
niques allow to come up with more complex adaptation strategies than the
simple one-to-one ingredient substitutions generated from the ontology O. In
particular, these techniques can help identifying interactions between the dif-
ferent ingredients that appear in the recipes (like e.g., that cocoa contains less fat
than baking chocolate, so oil should be removed) as well as co-occurrences of
ingredients (like say, that cinnamon is well-suited with apples). Besides, adap-
tation knowledge is learned at different levels of generality, so the user can be
guided into gradual solution refinements.

Several CBR systems make use of interactive and/or opportunistic knowl-
edge acquisition approaches to improve their learning capabilities. For exam-
ple, in Creek, an approach that combines case-based and model-based meth-
ods, general knowledge is acquired through interactions with the user [1]. This
knowledge acquisition process is provided in addition to the traditional case
acquisition and allows the system to acquire knowledge that cannot be captured
through cases only. In the Dial system, adaptation knowledge is acquired in the
form of adaptation cases: when a case has to be adapted, the adaptation process
is memorized in the form of a case and can be reused to adapt another case.
Hence, adaptation knowledge is acquired through a CBR process inside the
main CBR cycle. It must be remarked that adaptation cases can either be built
automatically by adaptation of previous adaptation cases or manually by a user
who interactively builds the adaptation case in response to a problem by select-
ing the appropriates operations to perform [12]. Hence, knowledge acquisition
in Dial appears to be both interactive and opportunistic. Chef is obviously re-
lated to the work described here [10]. Chef is a case-based planner in the cooking
domain, its task is to build recipes on the basis of a user’s request. The input of
the system is a set of goals (tastes, textures, ingredients, types of dishes) and the
output is a plan for a single recipe that satisfies all the goals. To solve this task,
Chef is able to build new plans from old ones stored in memory. The system
is provided with the ability to choose plans on the basis of the problems that
they solve as well as the goals they satisfy, but it is also able to predict problems
and to modify plans to avoid failures (plans are indexed in memory by the
problems they avoid). Hence, Chef learns by providing causal explanations of
failures thus marking elements as ”predictive” of failures. In other words, the
acquired knowledge allows the system to avoid identical failures to occur again.
In our approach, we propose to go one step further by using failure to acquire
knowledge that can be more widely used.

7 Conclusion and Future Work

In this paper, a novel approach for adaptation knowledge acquisition is pre-
sented in which the knowledge learned at problem-solving time by knowledge
discovery techniques is directly reused for problem-solving. An application is
proposed in the context of the cooking CBR system T and the feasibility
of the approach is demonstrated on some use cases. Future work will include

developing a graphical user interface and doing more extensive testing. Op-
portunistic and interactive knowledge discovery in T implies that the
user plays the role of the domain expert, which raises several issues. For ex-
ample, how to be sure that the knowledge expressed by a particular user is
valuable? How to ensure that the adaptation knowledge base will remain con-
sistent with time? Besides, T is meant to be multi-user, so if the system’s
knowledge evolves with experience, some synchronization problems might oc-
cur. Therefore, the envisioned multi-user, ever-learning T system needs
to be thought of as a collaborative tool in which knowledge acquired by some
users can be revised by others.

References

1. Aamodt, A.: Knowledge-Intensive Case-Based Reasoning in Creek, in Proceedings of
the 7th European Conference on Case-Based Reasoning (ECCBR’04), 1–15, 2004.

2. Badra, F., Lieber, J.: Representing Case Variations for Learning General and Spe-
cific Adaptation Rules, in Proceedings of the Fourth Starting AI Researcher’s Symposium
(STAIRS 2008), eds A. Cesta and N. Fakotakis, 1–11, 2008.

3. Badra, F., Bendaoud, R., Bentebibel, R., Champin, P.-A., Cojan, J., Cordier, A., Després,
S., Jean-Daubias, S., Lieber, J., Meilender, T., Mille, A., Nauer, E., Napoli, A., Toussaint,
Y.: Taaable: Text Mining, Ontology Engineering, and Hierarchical Classification for
Textual Case-Based Cooking, in Computer Cooking Contest - Workshop at European Con-
ference on Case-Based Reasoning (ECCBR’08), eds Schaaf, M., 219–228, 2008.

4. ECCBR Workshops, ECCBR 2008, The 9th European Conference on Case-Based Rea-
soning, Workshop Proceedings, eds Schaaf, M., 2008.

5. d’Aquin, M., Badra, F., Lafrogne, S., Lieber, J., Napoli, A., Szathmary, L.: Case Base
Mining for Adaptation Knowledge Acquisition, in Proceedings of the International Con-
ference on Artificial Intelligence, IJCAI’07, 750–756, 2007.

6. de Mántaras, R. L., Plaza, E.: Case-Based Reasoning: An Overview. in AI Communica-
tions, 10(1):21–29, 1997.

7. Cordier, A.: Interactive and Opportunistic Knowledge Acquisition in Case-Based
Reasoning, Phd Thesis, Université Lyon 1, 2008.

8. Cordier, A., Fuchs, B., Lana de Carvalho, L., Lieber, J., Mille, A.: Opportunistic Ac-
quisition of Adaptation Knowledge and Cases - The IakA Approach, in Proceedings
of the 9th European Conference on Case-Based Reasoning (ECCBR’08), eds Althoff, K.-D.
and Bergmann, R. and Minor, M. and Hanft, A., 150–164, 2008.

9. Craw, S., Wiratunga, N., Rowe, R.: Learning Adaptation Knowledge to Improve Case-
Based Reasoning. in Artificial Intelligence, 170(16-17):1175–1192, 2006.

10. Hammond, K.: CHEF: A model of case-based planning, in Proceedings of the 5th
National Conference on Artificial Intelligence, eds AAAI Press, 267–271, 1986.

11. Hanney, K., Keane, M. T.: The Adaptation Knowledge Bottleneck: How to Unblock
it By Learning From Cases, in Proceedings of the 2nd International Conference on CBR,
359–370, 1997.

12. Leake, D., Kinley, A., Wilson, D.: Acquiring Case Adaptation Knowledge: A Hybrid
Approach, in Proc. of the 13th National Conference on Artificial Intelligence, 684–689, 1996.

13. Melis, E., Lieber, J., Napoli, A.: Reformulation in Case-Based Reasoning, in Fourth
European Workshop on Case-Based Reasoning, EWCBR-98, eds B. Smyth and P. Cunning-
ham, Lecture Notes in Artificial Intelligence, 1488:172–183, 1998.

