Representing and Learning Variations

Fadi Badra
INSERM, Ul142, LIMICS, F-75006, Paris, France;
Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1142, LIMICS, F-75006, Paris, France;
Université Paris 13, Sorbonne Paris Cité, LIMICS, (UMR_S 1142), F-93430, Villetaneuse, France.
badra@univ-parisl3.fr

Abstract—In machine learning, objects are usually grouped
according to similarities found in the objects descriptions. Re-
cent works, however, suggest that representing the differences
between object descriptions is also pertinent in many learning
tasks. But not much study has been made on how to represent
and learn from differences. This paper proposes a qualitative
representation of inter-object variations that can be used as
input of a learning task. The main idea is to define inter-
objects variations as attributes of repetitions of objects, so that
machine learning methods will be able to manipulate them
in the same way as they manipulate object attributes. The
approach is tested on both classification and a numerical value
prediction tasks and shows encouraging results.

Keywords-machine learning; knowledge representation; qual-
itative representation of variations;

INTRODUCTION

Machine learning is a scientific field which purpose is
to design computer programs that improve with experience.
Traditionally, machine learning methods aim at grouping
objects based on similarities found in the objects descrip-
tions. However, some recent work on analogy [1], case-based
reasoning [2], [3], or semantic relationship learning [4] seem
to take an orthogonal approach: they take advantage of the
differences between object descriptions to achieve a learning
task. More precisely, these approaches manipulate explicit
representations of some inter-object variations.

In the common language, the term variation usually ex-
presses a difference between two or more states, be it a
difference between species (genetic variation), a perturbation
of the orbit (astronomical variation), an alteration of the form
during a repetition (musical variation), or a measure of the
codomain of a function or measure (mathematical variation).
The notion of variation is thus closely related to the notion of
difference. But difference is a complex concept to be defined.
As noted by G. Bateson in [5], the concept of a difference
is inherently relational:

“Obviously the difference between the paper
and the wood is not in the paper; it is obviously
not in the wood; it is obviously not in the space
between them, and it is obviously not in the time
between them. (Difference which occurs across
time is what we call ”change.”)”
Difference implies repetition, that is the reproduction of an
object with an optional variation in its form. So difference

(and thus, variation) somehow characterizes what happens
between an object and its reproduction, i.e., between the
different repetitions of a same object.

This paper studies how to represent a special kind of
variation, that expresses some differences between the values
taken by a property o when this property is applied to
describe different objects. Such a variation might express,
e.g., that “black morels are edible whereas false morels
aren’t” (: mushroom edibility), or that the movie “Glad-
iator is more violent than The Blair Witch Project” (yp:
degree of violence of a movie). To our knowledge, no
unifying framework exist for the qualitative representation
of variations. In [2] for example, the variation of a property
¢ between two elements x and y of a set X is represented
by three properties ¢, ¢T, and ¢=, to represent whether
the property is lost, gained, or preserved from x to y. This
representation is applied to learning adaptation knowledge
for case-based reasoning. In [4], the goal is to learn semantic
relationships such as “more violent than” from the Web.
The elements of X are compared with respect to each
property ¢ by introducing a total order on the set X. Such
an order results from the projection of the elements of X" on
a particular dimension of a conceptual space R™. Another
approach is [3], which assumes the existence of a function
—: X x X — R that quantifies the difference between two
elements x and y of X'. Taking the metaphor of differential
calculus, the variation from z to y is then represented
by the quantity d, = —(z,y) = y — z. Differences are
also represented in analogical reasoning: [1] represents the
variations of a single property in extension, by the means of
analogical proportions among objects of a set X'. Given four
elements z, y, z, and ¢ of X', an analogical propertion models
situations where “x is to y what z is to t” [6]. Another
domain where differences have been explicitely represented
for learning is pattern recognition [7]. In this domain,
pairwise dissimilarities between objects are represented to
compare structural objects. A dissimilarity representation
is a mapping X — R" from a set of objects X to a
dissimilarity space R™. This mapping is used to associate
to each object a set of pairwise dissimilarities that represent
the differences between this object and an object prototype.
Finally, explicitely representing variations for a learning task
might be very useful (though not much explored, to our

knowledge) for gene expression data analysis, and in par-
ticular searching for biclusters with coherent evolutions [8].
Such biclusters represent co-evolutions of gene expression
when experimental conditions vary.

In this paper, inter-objects variations are defined as at-
tributes of repetitions of objects, so that machine learning
methods can manipulate them as they manipulate object
attributes. The proposed representation is applied to machine
learning to perform classical tasks such as classification or
numerical value prediction.

The paper is organized as follows. The next section
studies how to represent variations between elements of a
simple value space, such as R, B, or an enumerated set.
Then, Sec. II shows how this representation can be used to
represent variations between objects in machine learning.
Sec. III defines variation learning, which is the task of
learning such variations from a set of training examples.
Sec. IV shows that that variation learning can be used to
predict the value of a property for a given object. Sec. V
gives implementation details, and then Sec. VI provides
experimental results. The last section concludes the paper
and gives future work.

I. REPRESENTING VARIATIONS

This section studies how to represent variations between
elements of a simple value space.

A. Variations over Simple Value Spaces

Let U/ be a non-empty set of values. The set U/ is assumed
to be either R (the set of real numbers), Z (the set of relative
numbers), B = {true, false} (the set of Booleans), an
enumerated set, e.g., {red, green, blue}, or the powerset
29 of a set (.

The notion of repetition can be represented by an ordered
collection of elements of {/. More formally:

Definition 1: Given a set U and an integer n > 2, a
repetition u of elements of ¢/ is an element of the cartesian
product U™.

To represent variations, the idea to view a variation as
an attribute of a repetition of elements of /. Therefore, a
variation A is defined as a function that associates to a
repetition u € U™ a value A(u) taken in a predefined set
of values V.

Definition 2: A variation A over a simple set of values
U is a partial function A : Y™ — V.

As an attribute, a variation can take different types of
values, depending on the chosen set V. If V is the set of
Boolean values B = {true, false}, the resulting variation
A is a binary attribute. It is the indicator function of a n-ary
relation ra over . If V is the set of real numbers R, the
resulting variation is a real-value attribute. It associates real
values to repetitions of elements of U'.

'Note that the given definition of a variation is quite general. Any
distance function defined on I/ is a variation according to this definition.

B. Examples

For a set of values U, a repetition u of elements of
U is an element of the cartesian product U™. Therefore,
a repetition u takes the form u = (uy,us,...,u,) with
u; € U for all 7. For example, if I/ is the enumerated set
U = {edible, poisonous}, an example of repetition
would be u = (edible,poisonous). If U = Z, an exam-
ple of repetition u of elements of U/ is u = (4, —8,1,1,0).

Variations are functions A : /™ —) that associate to a
repetition u € U™ a value A(u) taken in a predefined set V.
If U is the enumerated set Y = {edible, poisonous}
and V = B, an example of (Boolean-value) variation is the
variation edible™ defined by:

, _ true if Vi,u; = edible
edible™ (u) = .
false otherwise
’ A \ A((u,v)) = true iff :
Tiap,c} always true
= u=v
U F v
a~ U=v=a
a—"? u=a
?—Db v="D>b
a—b u=aandv=">b

Table 1
EXAMPLES OF VARIATIONS WHEN U IS THE ENUMERATED SET {a, b, c}.

’ A ‘ A((u,v)) = true iff : ‘
Tz always true
= U =uv
U F v
< u<v
< u<v
> uU=v
> u>v
Table II

EXAMPLES OF VARIATIONS WHEN U IS THE SET Z.

Table I gives some examples of Boolean-value variations
that can be defined for n = 2 when U/ is an enumerated set
such as {a,b, c}. The set of Booleans B can be considered
as an enumerated set containing only two values t rue and
false. Table II gives some examples of Boolean-value
variations that can be defined when U/ is the set of relative
numbers Z. Similar variations can be defined when U is
the set of natural numbers N or the set of real numbers R.
Table III gives some examples of Boolean-value variations
that can be defined when U is the powerset 2* of a set ().

| A [A((A,B)) =trueiff :

Too always true
c AcB
= A=B
A#B
- peEAandpe B
P~ peAandp ¢ B
pt p¢Aandpe B
p’ p¢ Aandp ¢ B

Table TIT
EXAMPLES OF VARIATIONS WHEN I{ IS THE SET 2¢2.

When V = R, variations associate a real value to a
repetition u € ™. An example of real-value variation that
can be defined for n = 2 and Y = R is the variation
— (minus) that computes the difference between the two
elements of a pair u = (uq, us):

—(ll) = Uz — U1

So far, we have only represented variations between
elements of a simple value space such as B, R, or an
enumerate set of values. Can the same principles be applied
to represent variations between objects in machine learning?

II. APPLICATION TO MACHINE LEARNING

This section studies how to represent variations between
objects in machine learning.

A. Idea of the method

Machine learning methods usually start with a set of
objects (also called items, or examplars), and attempt to
find regularities in their descriptions. By learning variations
between objects, we take an orthogonal approach to learning:
instead of characterizing what in the description of an object
makes it belong to a particular class, we want to characterize
what in the differences between two (or more) objects makes
these object belong to different classes. Similarly, we may
want to learn what in the differences between two object
descriptions makes the second object have a greater/lesser
value for a property ¢. To represent variations between
objects, the idea is to consider a single property ¢ that
transforms each object into a value in a simple value space,
and then to reuse the variations previously defined between
the values of a simple value space.

B. Definitions

Let X be a set of objects. A repetition x of elements
of X is an element of the cartesian product X™. To define
variations between objects, we’ll assume the existence of a
property ¢ that takes a value o(z) for some objects x of
a set X'. The property ¢ can be seen as a partial function
on X which associates to each element z of its domain
Dom, (with Dom, < X) an element ¢(z) of a set U
(its codomain). A variation ¢® over a set of objects X is

constructed from a pair (¢, A) consisting of a property ¢
together a variation between the values of the codomain U/
of .

Definition 3: Given a set X, a partial function ¢ : X — U
and a variation A over the set of values U/, a variation gaA
between objects is a function that associates to a repetition
X = (x1,2,...,x,) of X™ the value:

™ (x) = A((p(a1), @(22), p(20)))

For example, if ¢ is a function that associates to
each object an element of the enumerated set U =
{edible, poisonous}, and if A = edible™ defined
in Sec. I-B, the variation ©°4™e" is defined by:

true if Vi,p(x;) = edible

false otherwise

SDedible= (X) _
The following sections give examples of variations that

can be defined when the objects are represented in an

attribute-value formalism or in a logical language.

C. Variations in Attribute-Value Languages

An attribute-value language is interpreted on a cartesian
product U x ... x U,,, where each U; is a set of values
taken by an attribute. An attribute a; (7 € {1,2,...,m}) is
a function defined on X and that returns the ™ projection
on U;: for x € X, a;(x) = w; € U;. When objects are
represented in an attribute-value language, each attribute a;
may constitute a property ¢ of interest from which we may
want to define per-attribute variations. For example, if U; =
N and a; = age represents the age of a person, a per-
attribute variation age™ could be defined by:

true if age(z1) < age(z2)

< P —

age™((z1,22)) false otherwise

The similarity evaluation process (z1,x2) +— d, of [3]
involves the computation of a set of real-value per-attribute
variations. Each of these variations represents, for the rep-
etition X = (x1,z2) the difference between the two values
di(z1) and d;(z2) taken on the i problem descriptor d;.
The similarity d, between problems is represented by a
sequence d; = (dg,,...,d,,) of variations. The similarity
d, between solutions is represented in the same manner.
Differential adaptation consists in computing d, from d,
i.e., in deriving a collection of variations from another.

The same kind of approach is used to represent dissimi-
larities in the pattern recognition domain. A set of real-value
variations ¢~ ((z1,22)) = p(x2) —¢(x1) € R are computed
between an object x of X and a chosen prototype y.

D. Variations in Logic

Some variations can also be defined when the object
representation language is a logical language with model-
theoretic semantics. In such a formalism, one starts with a set

Q) (the domain of interpretation of formulas), and a function
Mod : £ — 2% that associates to each formula ¢ of the
language £ a subset Mod(¢) of Q. An interpretation Z is an
element of €2 and a model of a formula ¢ is an interpretation
such that Z € Mod(¢). A formula v is a logical consequence
of a formula ¢, denoted ¢ I ¢, iff Mod(¢) S Mod(v)).

On such formalism, one can define variations between
models by setting ¢ = Mod and stating constraints on the
models of the different formulas involved in a repetition x. A
simple example is the logical consequence relation |- that
reflects the inclusion relation between the models of two
formulas. The associated variation is Mod<, which returns,
for a repetition x = (¢,) € L2

true

if Mod(¢) < Mod(v))
false otherwise

Mod=((¢,v)) = {

In another example, inspired from [2], £ is the language
of propositional logic with m variables, so 2 = B™, and
¢ = Mod. Each propositional variable p of L is interpreted
as a singleton {p} € 2. For each element p € , the
four variations p~, p~, pT, and p? defined in Tab. III are
introduced. Using these variations, one can define e.g., the
variation ¢® = Mod® by:

true
false otherwise

Mod® ((¢,%)) = {

So if ¢ = pie A apple and ¢y = pie A —apple, the
variation Mod®PP*¢ will associate the value true to the
repetition x = (¢,1) (i.e., Mod®*P*® ((4,1)) = true)
since both ¢ |+ apple and ¥ |- —apple hold.

These examples show that when objects are represented
in an attribute-value or a logic formalism, inter-object varia-
tions can be represented as binary or real variables. Can such
variations be learned from a set of training examples? For
example, how can we learn from a set of film descriptions
that “horror films are more violent than musicals”?

III. LEARNING VARIATIONS

This section introduces variation learning, an inductive
learning task which goal is to learn a variation from a set
of training examples.

A. Definition

Inductive learning can be stated as the approximation
of a target function f by a function fy learned from a
set of training examples. The inductive learning hypothesis
consists in assuming that fy will approximate f closely
enough when the set of training examples is sufficiently
large [9]. Variation learning is defined as an inductive
learning task where the target function f is a variation

between objects?.

2As the target function f = ® is a function f : X™ — V), it can
be noted that this definition is consistent with the classical definition of
concept learning, which would be obtained by setting n = 1 and V = B.

if p € Mod(¢) and p ¢ Mod (7))

Definition 4: Variation learning consists in learning a
variation > between objects from a set of examples of
its input and its output.

B. Overview of the Learning Process

The following diagram describes the main steps of a

variation learning process:

{ Selection of a }

set of objects

X
{ Selection of a }

target variation

@A

[Choice of a hypothesis representation]
h
N
[Training set construction]
TS = {(h(x:), o™ (x:))}
[Selection of a }

learning algorithm

Selection of a set X of objects: The first step consists
in selecting a set X’ of objects.

Selection of a target variation p™: A target variation
©® is chosen by selecting a property ¢ of interest, and then
selecting a variation A over the values of its codomain U.

Choice of a hypothesis representation: A common
approach to inductive learning is (i) to choose a hypothesis
representation h, and then (ii) to search, in the space of
hypothesis implied by this representation, for the hypothesis
that best fits a set of training examples.

Training set construction: The training set T'S =
{(h(x;), 9™ (x;))} consists in a set of pairs (h(x;), o> (x;)),
where x; is a repetition (i.e., an element of X™), h(x;) is the
hypothesis representation of x;, and ¢ (x;) is the image of
x; by the target variation @2,

Selection of a learning algorithm: If variations are
used as the hypothesis representation language, they play the
role that object attributes play in classical learning methods.
Therefore, any classical learning algorithm can in principle
be applied as is to mine the training set.

C. General-to-Specific Ordering of Hypothesis

Inductive learning algorithms often rely on the defini-
tion of a general-to-specific relation between hypothesis. A
general-to-specific ordering of variations can be obtained
whenever a Boolean-value function ha can be associated to
each variation A (and, by extension, to the corresponding
inter-object variations). We would say that a variation A’
is more general than a variation A, denoted by har >4 ha,
iff ha(z) is true whenever ha/(x) is true. The simplest case

is when A is a Boolean-value variation (V = B). In this
case, it suffices to set hao = A. For example, let us assume
that the set ¢/ = R represents car prices and consider the
two variations <: 4> — B and #: > — B that represent
respectively a (strict) price increase and price difference. The
variations < and # can be ordered by generality (#>,<)
since their domain relations r— and 7, verify r- C r.:
a strict increase in price from a car to another implies a
difference in price. When V is not B, a way to obtain such
a Boolean-value function h A is to choose a subset C of V and
to set ha to be the indicator function ha(u) = [A(u) € C].
Fig. 1 and Fig. 2 give some examples of general-to-specific
orderings when U is the enumerated set {a,b, c} or the set
of relative numbers Z.

T{a,b,c}

Figure 1. Examples of general-to-specific orderings between variations
when U is the enumerated set {a,b, c}.

Tz

< >

Figure 2. Examples of general-to-specific orderings between variations
when U is the set of relative numbers Z.

D. An Example

In this example, the objects represent students passing an
exam and the goal is to be able to predict for two new
students which one will have the highest mark.

Selection of a set X of objects: Let us assume that
X = {o01,09,03} contains three objects 01, 02, and 03
that represent high-school students (Tab. IV). Each object
is described by the values it takes for three attributes:
the nominal attribute s ranges in {M,F}, and represents
the student’s sex, and the two numeric attributes a and m
measure respectively the student’s alcohol consumption, and
the mark obtained at an exam.

| sex (s) | alcohol (a) | mark (m) |

01 M 2 14

02 F 4 6

03 F 1 18
Table IV

A SET X' OF OBJECTS REPRESENTING HIGH-SCHOOL STUDENTS.

Selection of a target variation p™: The target vari-
ation is m=: the property of interest ¢ is the attribute m,
which gives the mark of a student at the exam, and the
variation A =< is the function Z x Z — B defined by
< ((u1,u2)) = true iff uy < ua.

Choice of a hypothesis representation: A hypothesis
h(x;;) is constructed for a repetition x;; = (0;,0;) by
computing the 9 variations "™, gM™F gF2M F2F o<
a<, a~, a”, a%, and a”. Each variation acts as a binary
variable and represents some difference between o; and o;
for the attribute s (sex) or the attribute a (alcohol). For
example, the sex of o1 is M (i.e., s(01) = M) and the sex of
09 is F (i.e., s(02) = F) so s"7F(x12) = true.

Training set construction: All pairs (0;,0;) of X
are included in the training set: 7S contains all pairs
(h(xi;), ™ (xi;)) such that x;; = (0;,0;) and ¢ (x;;) =
true iff m(o;) < m(o;).

The resulting dataset is (crosses represent the Boolean
value true):

X11 X12 X13 X21 X22 X23 X31 X32 X33

=
{
=

s X

SMHF x x

SF—»M X X

sf=F X | X X | X
a< X X | X
a< X X X
a~ X X X
a” X | X | X X | X | X
aZ X | X X

a” X | X X

m= X | X X

Selection of a learning algorithm: This dataset is given
as input to the learning algorithm Id3 [10], taking the
attribute m= as the class attribute. The following decision
tree is obtained:

aZ = false

According to this model of the data, an increase in exam
mark can be predicted whenever the alcohol consumption
decreases.

IV. VARIATION-BASED PROPERTY PREDICTION

This section shows how learned variations can be used to
predict the value of the property ¢ for a given object.

A. Position of the Problem

For a new object y, the goal is to predict the value p(y)
that a property ¢ takes in y.

o(y)?

0

Depending on the codomain U of ¢, two prediction problems
are considered: class prediction (if I/ is an enumerated set),
and numerical value prediction (if U = R).

B. Idea of the Method

The idea of the method is to reduce the property prediction
problem to a (or say, many) variation prediction problem(s).

o(x)

Since ¢(x) is known for all x € X, the idea is to learn a
well-chosen variation ¢, so that (y) can be deduced from
©® and ¢(z). This operation is repeated for every = € X,
in an ensemble learning approach, and a value is predicted
for ¢(y) in a majority vote.

<

C. An Algorithm for Class Prediction

Let us assume that the set X is partitioned into two sets
Aand B (i.e., X = Au B and An B =). The goal is to
predict, for a new object y, whether it belongs to A or B.

Choice of the property p: Let us set Y = {A,B} and
define the function ¢ by:

p(r) =

A ifzeAd
B ifzeB

The problem now consists in predicting for a new object y
whether ¢(y) = A or ¢(y) = B holds.

Choice of the variation A: Let us set A = ? — A,
According to the definition of this variation (Tab. I), if
©’72(x) = true for a repetition x = (x,y), then p(y) = A
holds, so y € A. Otherwise, y € B.

o(r)

Q?—)A?

A simple variation-based class prediction algorithm,
called VC (for Variation-based Classifier), is presented in
Algo. 1. VC takes as input a learning algorithm cls, a new
instance y € X to be classified, and a hypothesis repre-
sentation h. VC predicts a class (A or B) for y. All pairs
(w;,x;) € X? are considered to construct the training set.
For each of them, a repetition x;; = (z;,x,) is formed and
its associated hypothesis h(x;;) is computed. The classifier

Algorithm 1 VC
Input: y ¢ X': a new instance to be classified
Input: cls: a classifier
Input: h: a hypothesis representation
votey «— 0
voteg «— 0
Form T'S = {(h(xi;), " " (xi;)) | Xij = (24, 2;) € X?}
Train the learning algorithm cls on T'S
for all x € X do
Form x = (z,y)
Predict o7 *(x) using cls
if ©?72(x) = true then
votey «— votey + 1
else
voteg < voteg + 1
end if
end for
return y € A if vote4 > votep, else y € B

cls is trained on a training set 7'S that includes all hypothesis
h(x;;), along with their associated value ¢’ *(x;;) on the
variation ¢°*. The class of y is then predicted using an
ensemble learning approach. For each instance x € X, the
repetition x = (x,y) is formed, and cls is used to predict
the value for ¢?~?(x). The class of y is predicted using a
majority vote.

D. An Algorithm for Numerical Value Prediction

The goal is to predict for a new object y a real value ¢(y).
Choice of the property p: The property ¢ that we want

to learn is a real-value function ¢ : X — R.
Choice of the variation A: Let us set A = — (minus),
defined in Sec. I-B: ¢~ (x) = ¢(y) — ¢(x) for a repetition

x = (z,y), so for any z € X, o(y) = o(x) + ¢~ (X).

A variation-based numerical value prediction algorithm,
called VN (for Variation-based Numerical Value Prediction),
is presented in Algo. 2. VN takes follows the same principles
as VC, but uses the variation ¢~ to predict a numerical value
for each instance = € X. This value ¢~ (xX) represents the
difference p(y) — p(x) between the value of the property ¢
in z and in y. The predicted value for ¢(y) is the average
of these values.

V. IMPLEMENTATION

An implementation of the general representation method
for variations was made in Scala, and the property value
prediction methods were implemented using the Java API
of the Weka package [11].

Algorithm 2 VN

Input: y ¢ X': a new instance to be classified
Input: cls: a classifier
Input: h: a hypothesis representation
V&g
Form T'S = {(h(xi;), ¢~ (xij)) | xij = (2i,25) € X}
Train the learning algorithm cls on T'S
for all x € X do

Form x = (x,y)

Predict ¢~ (x) using cls

Save estimation of p(y): V <« V u {p(z) + ¢~ (x)}
end for

1

return 7 X0y v

VI. EXPERIMENTS

This section provides experimental results obtained with
the VC and VN algorithms.

A. Class prediction

The VC algorithm was compared to other classifiers on
five datasets from the UCI machine learning repository [12]:
MONK 1,2, and 3 problems (MO.1, MO.2, and MO.3),
Breast-W (Br.), and SPECT (SP.) (Tab. V).

MO.1 MO.2 MO.3 | Br. SP.
Instances 432 432 432 683 267
Classes 2 2 2 2 2
Nominal Att. 6 6 6 0 22
Numerical Att. 0 0 0 9 0
Nominal Var. 43 43 43 0 88
Numerical Var. 0 0 0 54 0

Table V

DESCRIPTION OF DATASETS.

For each dataset, the hypothesis representation h is an
attribute-value language. Each attribute of A is a variation of
the form af, where a; is one of the (binary or numerical)
attributes of the source dataset and A is one of the variations
defined in Sec. I-B (Tab. I and Tab. II). For example, each
pair of instances of the Monks dataset will be represented
using the nominal variations a;=, a;7, a;' a;'™?, etc.

Table VI provides recognition rates obtained using a 5-
fold cross validation, and for different classifiers cls: the
decision tree algorithms Id3 and PART, the nearest-neighbor
classifier IB1, the multi-layer perceptron (MLP), and the
propositional rule learner JRip. Best results are highlighted
in bold. These results can be compared to the ones obtained
by the original classifiers on the same datasets (Table VII).
Several comments arise.

o The results obtained by VC parameterized by a clas-
sifier cls is most of the time better than the results
obtained with the classifier cls alone, with the exception
of the JRip classifier.

MO.1 MO.2 MO.3 Br. SP.
VC(cls=Id3) 97 + 2 66+ 1 100 £ 0 9% + 1 83+2
VC(cls=PART) 96 + 4 67 +3 100 £ 0 n/a 84 +3
VC(cls=IB1) 9 +1 63+ 1 98 £+ 3 89+4 78t 4
VC(cls=MLP) 91 £ 13 67 + 3 99 £+ 2 96 + 1 81+2
VC(cls=JRip) 80 + 15 67 + 3 97+ 3 n/a 80 + 2
Table VI

RECOGNITION RATE (MEANS AND STANDARD DEVIATION).

MO.1 MO.2 | MO.3 | Br. SP.

1d3 94 65 100 n/a 71

PART 100 68 100 96 79

IB1 72 61 78 96 79

MLP 100 100 100 95 79

JRip 95 65 99 96 81
Table VII

COMPARISON WITH WELL-KNOWN CLASSIFIERS.

« The choice of the classifier cls does not seem to have
a great impact on the results. The recognition rate is
very similar whatever the classifier used.

« Decision tree classifiers appear to be the best choice on
any dataset.

B. Numerical Value Prediction

The VN algorithm was applied to the task of predicting
the mark of secondary students at a Maths exam.

The Student-Mat dataset [13] gives the results of sec-
ondary students at a Maths exam. The set X contains
395 objects, each of which represent a secondary student.
Objects are described in an attribute-value formalism by
30 attributes. The attribute G1 associates to each object
a real value representing its mark at the Maths exam.
Other attributes are either demographic (e.g., age, family
size, mother’s education), social (e.g., alcohol consumption,
activities), or school-related (e.g., number of past failures,
absences).

The target variation is ¢ = G1~, which represents the
variation in the student’s exam mark: for x;; = (0;,0;),
Gl (x;;) = G1(0j) — G1(0;).

As in the previous experiment, the hypothesis represen-
tation h is an attribute-value language. Each attribute of
h is a variation of the form aiA, where a; is one of the
(binary or numerical) attributes of the source dataset and
A is one of the variations defined in Sec. I-B (Tab. I and
Tab. II). For example, each pair of instances of the dataset
will be represented using the nominal variations age™,
age”, age=, age<, etc. In the resulting training set 7'S,
each repetition of objects X;; = (0;,0;) is described by 196
variations: 78 for the 13 numerical attributes of the source
dataset, and 118 for the 17 binary attributes.

Table VIII provides root mean squared error rates and
standard deviations obtained using a 5-fold cross validation,

Mean squared error | Std deviation
VN(cls=M5P) 2.48 0.13
VN(cls=LinearRegression) 2.50 0.08
VN(cls=IBk) 2.55 0.23
VN(cls=DecisionTable) 2.58 0.12
MS5P 2.51 0.05
LinearRegression 2.53 0.05
1Bk 3.18 0.18
DecisionTable 2.71 0.23
Table VIII

MEAN SQUARED ERROR AND STANDARD DEVIATIONS.

and for different classifiers cls: the model tree learner M5P,
the k nearest neighbor algorithm IBk, linear regression
(LinearRegression), and DecisionTable. Some comments can
be made:

o When parameterized with a classifier cls, VN algo-
rithms outperforms each time the classifier cls alone.

« The error rate improvement however, is often small.

« The choice of cls does not seem to have a great impact
on the results.

C. Discussion

These first experiments show that it makes sense to learn
inter-object variations instead of focusing on characterizing
the objects themselves as it is done in most machine learning
methods. However, the proposed algorithms are very naive
and they suffer a high complexity, both spatial and temporal,
which makes them inadequate for real-world scenarios. In
particular, all pairs of objects of the source dataset are
included in the training set, which quickly leads to an
explosion of the training set size. On a current PC, we had
memory limitations (n/a values in Tab. VI) when computing
the training set for the BreastW dataset, which contains over
500 objects.

CONCLUSION AND FUTURE WORK

This paper studies how to represent inter-object variations
for machine learning. A qualitative representation of inter-
object variations was proposed. This representation was
designed so that variations can be used as input of a learning
task to learn what differenciates an object from another.

The main achievement of this study is that variations
are represented in the same way that objects are usually
described: a variation is simply an attribute of a repetition
of objects, and can be manipulated by any learning algorithm
in the same way that it manipulates object attributes. Two
basic algorithms were proposed that apply variation learning
to object classification and numerical value prediction. First
results are encouraging: variation-based algorithms, when
parameterized by a learning algorithm cls, generally perform
better than the algorithm cls alone. However, the proposed
algorithms are very naive and suffer major limitations: their
complexity, both temporal and spatial, is very high.

Representing variations seems promising in many areas
because it enables to symbolically represent dissimilarities
between objects in a way that goes beyond computing a
set of numerical values (as in pattern recognition) or a
set of attribute coefficients (as in classical regression). It
enables to represent co-variations and rules that could not
be expressed otherwise (e.g., “the quantity of sugar increases
when chocolate is replaced by cocoa in a cooking recipe”).

Future work includes applying the approach on a real-
world scenario in the medical domain, finding optimizations
of the proposed algorithms, and studying how to apply
frequent itemset algorithms to mine a set of variations.

REFERENCES

[1] L. Miclet, S. Bayoudh, and A. Delhay, “Analogical Dis-
similarity: Definition, Algorithms and Two Experiments in
Machine Learning,” vol. 32, pp. 793-824, 2008.

[2] F. Badra, S. Lafrogne, J. Lieber, A. Napoli, and L. Szathmary,
“Case Base Mining for Adaptation Knowledge Acquisition,”
in Proc. Int. Conf. Artif. Intell. IJCAI’07, Hyderabad, India,
2007, pp. 750-755.

[3] B. Fuchs, J. Lieber, A. Mille, and A. Napoli, “Differential
adaptation: An operational approach to adaptation for solving
numerical problems with CBR,” Knowledge-Based Syst., Apr.
2014.

[4] J. Derrac and S. Schockaert, “Characterising Semantic Relat-
edness using Interpretable Directions in Conceptual Spaces,”
in ECAI 2014.

[5] G. Bateson, Steps to an Ecology of Mind. Chandler Publish-
ing Company, 1972, ch. Form, Substance, and Difference.

[6] H. Prade and G. Richard, “Reasoning with Logical Propor-
tions,” in Int. Conf. Princ. Knowl. Represent. Reason., 2010,
pp. 545-555.

[7]1 R. P. W. Duin and E. P¢kalska, “The dissimilarity space:
Bridging structural and statistical pattern recognition,” Pattern
Recognit. Lett., vol. 33, no. 7, pp. 826-832, 2012.

[8] S. C. Madeira and A. L. Oliveira, “Biclustering algorithms
for biological data analysis: a survey.” IEEE/ACM Trans.
Comput. Biol. Bioinform., vol. 1, no. 1, pp. 24-45, 2004.

[9] T. M. Mitchell, Machine Learning. Elsevier, 1983.

[10] J. R. Quinlan, “Induction of Decision Trees,” Expert Syst.,
pp. 81-106, 1986.

[11] M. Hall, H. National, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten, “The WEKA Data Mining
Software : An Update,” SIGKDD Explor., vol. 11, pp. 10-18,
2009.

[12] M. Lichman, “UCI machine learning repository,” 2013.
[Online]. Available: http://archive.ics.uci.edu/ml

[13] P. Cortez and A. Silva, “Using Data Mining To Predict
Secondary School Student Performance,” in Proc. 5 th Annu.
Futur. Bus. Technol. Conf., 2008, pp. 5-12.

