
Representing Case Variations for
Learning General and Specific

Adaptation Rules

Fadi BADRA a and Jean LIEBER a

a LORIA (UMR 7503 CNRS–INPL–INRIA-Nancy 2–UHP)
BP 239, 54 506 Vandœuvre-lès-Nancy, FRANCE

email: {badra,lieber}@loria.fr

Abstract. Adaptation is a task of case-based reasoning systems that is largely
domain-dependant. This motivates the study of adaptation knowledge ac-
quisition (AKA) that can be carried out thanks to learning processes on the
variations between cases of the case base. This paper studies the represen-
tation of these variations and the impact of this representation on the AKA
process, through experiments in an oncology domain.

Introduction

Case-based reasoning (CBR [7,9]) aims at solving a target problem thanks to a
case base. A case is the description of a problem-solving episode which can be
generally seen as a pair (problem,solution). A CBR system selects a case from the
case base and then adapts the associated solution. Adaptation is a difficult task
since it requires domain-dependant knowledge that needs to be acquired. The
goal of adaptation knowledge acquisition is to detect and extract this knowledge.
Some approaches have proved successful in learning such adaptation knowledge
from the case base [2,3,6].

Our hypothesis is that this learning task can be improved by choosing an
appropriate representation of the variations between cases in the case base. In-
troducing general knowledge on variations enables the extraction of different
types of adaptation rules. In particular, a limited number of general adaptation
rules may be presented to the analyst for validation. Afterwards, these rules are
helpful to structure a set of specific adaptation rules.

The paper is organized as follows. Section 1 defines general notions on CBR
that are used in the rest of the paper. The AKA approach of [6] is summarized
in section 2. It involves some knowledge representation and learning issues —
representing and learning variations and adaptation rules— that are addressed
in section 3 independently of the case representation formalism. Then, this gen-
eral framework is applied to an attribute-constraint formalism for representing
cases (section 4). Section 5 presents some experiments in an oncology domain to

validate our hypothesis on the usefulness of choosing an appropriate represen-
tation of the variations. Section 6 discusses this work by comparing it to related
work. Finally, section 7 concludes and points out some future work.

1. Definitions

LetLpb andLsol be two languages. A problem (resp. a solution) is by definition an
element ofLpb (resp. ofLsol). The existence of a binary relation onLpb ×Lsol
is assumed, but not completely known in general. Sol(pb) is a solution of pb
if pb Sol(pb). A case is a pair (pb, Sol(pb)) such that pb Sol(pb). The
case base is the finite set of available cases, called source cases and denoted by
(srce, Sol(srce)). CBR aims at solving a target problem tgt thanks to a case base.
It consists in general in retrieving a source case (srce, Sol(srce)) such that srce
is judged similar to tgt and in adapting this retrieved case in order to solve tgt:
Adaptation : (srce, Sol(srce), tgt) 7→ Sol(tgt) where (srce, Sol(srce), tgt) is
an adaptation problem and Sol(tgt) is a candidate solution for tgt (the relation
tgt Sol(tgt) is not ensured since CBR is not a deductive reasoning). The
adaptation step is based on adaptation knowledge that has to be acquired, which
constitutes the adaptation knowledge acquisition issue.

2. AKA Principles

This section reformulates the main principle of the AKA approach proposed in
[6]. The adaptation process is assumed to be composed of three steps:

1. matching : (srce, tgt) 7→ ∆pb. A representation∆pb of the variations from
srce to tgt is computed.

2. AK : ∆pb 7→ ∆sol. The adaptation knowledge AK enables to build a
representation ∆sol of solution variations.

3. modifying : (Sol(srce),∆sol) 7→ Sol(tgt) such that
matching(Sol(srce), Sol(tgt)) = ∆sol. ∆sol represents the variations
from Sol(srce) to the unknown solution Sol(tgt) and thus enables to
infer Sol(tgt) from Sol(srce).

Step 2 requires some adaptation knowledge. Conversely, if a set of pairs
(∆pb,∆sol) is available, some machine learning techniques may be used to learn
AK. The idea is to exploit pairs of source cases to obtain such pairs of vari-
ations. If (srcek, Sol(srcek)) and (srce`, Sol(srce`)) are two source cases, let
∆pbk` = matching(srcek, srce`) and ∆solk` = matching(Sol(srcek), Sol(srce`)).
Then, AK is learned with the training set {(∆pbk`,∆solk`)}k`.

3. Representing and Learning Adaptation Rules

In order to make this AKA approach operational, it is necessary to be able to
represent the variations∆pb and∆sol and to infer from ordered pairs of problems
(resp., of solutions) ∆pb (resp., ∆sol), which constitutes the matching process.

3.1. Representing Variations

A variation from a problem to another is the representation of a binary relation
r between problems. The language of such relations r is denoted by L∆pb. Thus,
the semantics of any r ∈ L∆pb is given by its extension: Ext(r) ⊆ Lpb × Lpb.
L∆pb is assumed to contain the relation >∆pb and the relation 〈srce, tgt〉 for
each ordered pair (srce, tgt) ∈ Lpb × Lpb. The semantics of these elements is:
Ext(>∆pb) = Lpb × Lpb and Ext(〈srce, tgt〉) = {(srce, tgt)}.

Let � be the entailment relation on L∆pb (if r, s ∈ L∆pb, r � s means that
Ext(r) ⊆ Ext(s)) and ≡ be the equivalence relation on L∆pb (r ≡ s iff r � s
and s � r). � (and thus ≡) is assumed to be computable. For r ∈ L∆pb, let
DC(r) = {s ∈ L∆pb | r � s} be the deductive closure of r.

Matching two problems srce and tgt aims at identifying the relations
r ∈ L∆pb relating srce to tgt, that is, the set DC(〈srce, tgt〉). Since any relation
r ∈ L∆pb relating srce and tgt can be deduced from the relation 〈srce, tgt〉,
matching is defined as:

matching(srce, tgt) = 〈srce, tgt〉

The representation of solution variations is similar: L∆sol is the solu-
tion variation language containing >∆sol and 〈Sol(srce), Sol(tgt)〉; �, ≡ and
DC are defined similarly on L∆sol; finally, matching(Sol(srce), Sol(tgt)) =
〈Sol(srce), Sol(tgt)〉.

The Symmetry Hypothesis. The symmetry hypothesis is optional in our frame-
work. It states that for each r ∈ L∆pb, there exists r−1

∈ L∆pb such that, for each
(srce, tgt) ∈ Lpb × Lpb, (srce, tgt) ∈ Ext(r) iff (tgt, srce) ∈ Ext(r−1). In partic-
ular, >∆pb−1

≡ >∆pb and 〈srce, tgt〉−1
≡ 〈tgt, srce〉. A similar hypothesis can be

made on L∆sol.

3.2. Representing Adaptation Rules

An adaptation rule is a piece of knowledge that can be used to solve adaptation
problems (srce, Sol(srce), tgt) ∈ Lpb × Lsol × Lpb: it aims at giving pieces of
information about a solution Sol(tgt). The adaptation rules studied in this paper
are ordered pairs (r, R) ∈ L∆pb × L∆sol that can be interpreted as follows:

if 〈srce, tgt〉 � r

then Sol(tgt) is such that 〈Sol(srce), Sol(tgt)〉 � R
(1)

If there exists at most one Sol(tgt) ∈ Lsol such that (1) holds for any adaptation
problem (srce, Sol(srce), tgt) then the adaptation rule (r, R) is said to be specific.
Otherwise, it is a general adaptation rule that is not always sufficient to solve an
adaptation problem. Given two adaptation rules AR1 = (r1, R1) and AR2 = (r2, R2),
AR1 is said to be less general than AR2 —denoted by AR1 � AR2— if r1 � r2 and
R1 � R2. This means that AR1 can be applied on less adaptation problems but is
more accurate in the sense that the constraint on Sol(tgt) is stronger. The most

general adaptation rule is (>∆pb,>∆sol). Given an adaptation rule AR, the deductive
closure of AR is the set DC(AR) of adaptation rules such that each AR′ ∈ DC(AR) is
more general than AR (i.e., AR � AR′).

Under the symmetry hypothesis (on L∆pb and on L∆sol), an inverse rule
AR−1 = (r−1, R−1) can be associated to each rule AR = (r, R).

3.3. Learning Adaptation Rules

As stated in section 2, AKA consists in using as training set TS a set of pairs
(∆pbk`,∆solk`) with

∆pbk` = 〈srcek, srce`〉 ∈ L∆pb

∆solk` = 〈Sol(srcek), Sol(srce`)〉 ∈ L∆sol

Thus, an ordered pair ARk` = (∆pbk`,∆solk`) ∈ TS is a specific adaptation rule
that solves only the adaptation problem (srcek, Sol(srcek), srce`) in a solution
Sol(srce`). AKA consists in highlighting some adaptation rules (r, R) that are
more general than a “large” number of elements of TS. More formally, with AR
an adaptation rule, let

support(AR) =
card {ARk` ∈ TS | ARk` � AR}

card TS

Given a uniform distribution of probability on TS, support(AR) is the probability
that a random variable on TS entails AR. Learning adaptation rules aims at finding
the AR = (r, R) ∈ L∆pb × L∆sol such that support(AR) ≥ σs, where σs ∈ [0; 1] is a
learning parameter called the support threshold.

It can be noticed that if AR1 � AR2 then support(AR1) ≤ support(AR2). There-
fore, a presentation of the learned adaptation rules by decreasing support, start-
ing from (>∆pb,>∆sol) whose support is 1, presents any adaptation rule before all
the adaptation rules that are more specific than it.

Under the symmetry hypothesis, support(AR−1) = support(AR) for each
adaptation rule AR. It is suggested that the two rules AR and AR−1 are presented
together to an expert for validation.

4. Application to an Attribute-Constraint Formalism

In this section, the general framework described above is applied to an attribute-
constraint formalism that extends the attribute-value formalism frequently used
in CBR [7].

4.1. Representing Cases

A problem instance is described by the values it takes for some attributes. Prob-
lems are defined by specifying some sets of values these attributes may range
over. For example, the problem in the domain of breast cancer treatment,

pb = (gender, {female}) ∧ (age, [50;+∞[) ∧ (s, [4; 7[)

represents the class of women older than 50 and for which the tumor size s is
such that 4≤s<7 cm.

More formally, a problem instance is an element of the Cartesian product
Instpb = V1 × · · · × Vm, where Vi is a set of values. In the examples, Vi is assumed
to be either R (the set of real numbers), Z (the set of integers), B = {true, false}
(the set of Boolean) or an enumerated set (e.g. {red,green,blue}). The attribute ai
(i ∈ {1, 2, . . . ,m}) is the ith projection of Instpb on Vi: ai(x1, . . . , xm) = xi.

To each ai is associated a language of constraints Lai : C ∈ Lai is interpreted
as a subset Ext(C) of Vi. As an example, the constraint [50,+∞[stated on Vi = Z
represents the set of integers that are greater or equal to 50. Lai is assumed
(1) to contain the constraints >i and ⊥i such that Ext(>i) = Vi and Ext(⊥i) = ∅,
(2) to be closed under conjunction (if C, D ∈ Lai there exists E ∈ Lai such that
Ext(C) ∩ Ext(D) = Ext(E)). Besides, it is assumed that two distinct constraints
cannot denote the same set of objects: if Ext(C) = Ext(D) then C = D.

A problem descriptor is a pair d = (ai, C) where i ∈ {1, . . . ,m} and C ∈ Lai . It is
interpreted as the set of problem instances which value for the ith attribute ai is
in the extension of C: Ext((ai, C)) = a−1

i (Ext(C)) = {x ∈ Instpb | ai(x) ∈ Ext(C)}.
Finally, a problem is an expression of the form pb = d1 ∧ · · · ∧ dp where the

di are problem descriptors. A problem is interpreted by an intersection: Ext(d1 ∧

· · · ∧ dp) = Ext(d1) ∩ . . . ∩ Ext(dp).
A problem pb is satisfiable if Ext(pb) , ∅. A problem pb is under normal form

if pb = d1 ∧ · · · ∧ dm where, for each i ∈ {1, . . . ,m}, di = (ai, C) for some C ∈ Lai .
It can be shown that a problem in normal form pb is satisfiable iff it contains no
occurrence of⊥i. Moreover, every satisfiable problem pb is equivalent to a unique
problem pb′ in normal form: Ext(pb) = Ext(pb′). If pb = (a1, C1) ∧ · · · ∧ (am, Cm)
is satisfiable and in normal form, then ai(Ext(pb)) = Ext(Ci), which justifies the
notation ai(pb) = Ci. For the sake of simplicity, a conjunct of a problem of the
form (ai,>i) may be omitted in the notation: pb = (a1, C1) ∧ (a2,>2) = (a1, C1).

Solutions are defined analogously with a set of attributes A j with j ∈ {1, . . . ,n}.

4.2. Representing Variations

In this section, problems and solutions are assumed to be satisfiable and in normal
form. The problem variation language L∆pb is defined by four constructors.
The constructors >∆pb and 〈srce, tgt〉 have already been defined in the general
framework (cf. section 3.1). The third constructor is the conjunction: if r, s ∈ L∆pb
then r∧ s ∈ L∆pb and (pb1, pb2) ∈ Ext(r∧ s) iff (pb1, pb2) ∈ Ext(r) and (pb1, pb2) ∈
Ext(s). The last constructor is aδi , where ai is an attribute and δ represents a binary
relation on Lai ; δ is chosen in a language L∆ai . The semantics of aδi is as follows:
two problems srce and tgt are related by aδi if ai(srce) and ai(tgt) are related
by δ. More formally:

Ext(aδi) = {(srce, tgt) ∈ Lpb × Lpb | (ai(srce), ai(tgt)) ∈ Ext(δ)}

For example, let us consider the formalism Lpb based on the attributes a1 =
gender, a2 = age, and a3 = s (V1 = {female, male}, V2 = Z, and V3 = R). It is

assumed that it is an attribute-value formalism, meaning that Lai contains only
>i, ⊥i, and the singletons {x}, for x ∈ Vi. All the L∆ai share the relations = and ,.
L∆age andL∆s share the relations δ ∈ {<,≤,≥, >} on singletons defined by {x} δ {y}
if x δ y (e.g., {3} < {4} since 3 < 4). Thus, if

srce = (gender, {female}) ∧ (age, {65}) ∧ (s, {3})

tgt = (gender, {female}) ∧ (age, {70}) ∧ (s, {2})

then

〈srce, tgt〉 � gender= ∧ age< ∧ age≤ ∧ age, ∧ s> ∧ s≥ ∧ s,

L∆sol is defined thanks to four similar constructors.
The adaptation rule language is L∆pb × L∆sol. If AR = (r, R) and AR′ = (r′, R′)

are two adaptation rules then AR∧ AR′ denotes the adaptation rule (r∧ r′, R∧ R′),
which is consistent with the semantics of adaptation rules given by (1).

Examples of δ. The definition of L∆pb has been reduced above to the definition
of a L∆ai , for each attribute ai. Although the definition of L∆ai is a knowledge
acquisition issue, some examples of relations δ ∈ L∆ai that may be useful are
presented here.

When a set Vi is associated to an algebraic structure, the latter may be reused
on singletons. For example, since ≤ is a relation onZ, it can be used as a relation
between singletons of integers, as already mentioned above ({3} < {4}). Another
example is related to the law + on Z, that is used to define the binary relation
δ = add(α) on Z (for each α ∈ Z): x add(α) y if x + α = y.

Since δ relates two (representations of) sets, the classical binary relations
between sets ((,⊆,=,⊇,)) can be suggested for elements of L∆ai . Additionally,
let C ∈ Lai and let (⊆C⊇) be defined, for C1, C2 ∈ Lai by C1 (⊆C⊇) C2 if Ext(C1) ⊆
Ext(C) ⊇ Ext(C2): C1 and C2 share the constraint C. Another relation is 	 (resp., ⊕)
defined by C 	 D if C , >i and D = >i (resp., C = >i and D , >i). Note that a	i � a

(
i

and a⊕i � a
)
i . These relations can be applied in particular whenLai = 2Vi , where Vi

is an enumerated set. They can also be applied whenL∆ai is a finite set of atomic
constraints organized in a hierarchy of root >i. Finally, they can be applied on
intervals on, e.g., Z or R.

Other relations between intervals may be defined thanks to the reuse of Allen
relations on temporal intervals [1]. For example, if C1 = [x1, y1] and C2 = [x2, y2]
are two closed intervals on R, C1 b C2 if y1 < x2, a = b−1, C1 m C2 if y1 = x2,
etc. (b, a, and m stand for before, after, and meets). These qualitative relations may
be completed with quantitative relations such as addToBound(α, β) defined by
C1 addToBound(α, β) C2 if x1 + α = x2 and y1 + β = y2.

5. Experiments

Some experiments have been carried out in the oncology domain in order to
evaluate the benefit of choosing an appropriate representation of the variations
between cases.

5.1. Learning algorithm: C

C [11] is a data-mining algorithm that efficiently performs the extraction of
frequent closed itemsets (FCIs). Given a finite set P (the set of properties or items),
an itemset I is a subset of P: I ∈ 2P. The input of C is a set of itemsets called
the transactions. The support of an itemset I is the proportion support(I) of the
transactions T that contain I (T ⊇ I). An itemset I is frequent with respect to the
threshold σs ∈ [0; 1] if support(I) ≥ σs. I is closed if adding to it any property
alters its support: support(I) > support(I ∪ {x}) for any x ∈ P such that x < I.

A benefit of using C lies in its efficiency with large sets of transactions.
A difficulty is that, since it operates on data (and not on pieces of knowledge),
a translation of the training set TS into a set of transactions is required. Since
the training set is constituted by specific adaptation rules ARk` that have to be
apprehended modulo the deduction relation �, the idea is to translate ARk` into
the transaction DC(ARk`). To be consistent with this definition, the set P is set
to
⋃
ARk`∈TS

DC(ARk`). Now, let AR1, AR2, and AR3 be three adaptation rules and I =

{AR1, AR2, AR3}. If there exist exactly n ARk` ∈ TS such that ARk` � AR1 ∧ AR2 ∧ AR3
then the itemset I is frequent iff n ≥ σs × card (TS). If, for the same n ARk` ∈ TS,
ARk` � AR with AR < I, then I is not closed. In other words, if I is not closed, this
means that I is an over-generalization that can be specialized in the adaptation
rule language without loss of the coverage of the rule in the training set.

A practical problem is raised when some DC(ARk`) are not finite: this leads to
an infinite P that C cannot manage. The idea is then to restrict P to a finite
set and each deductive closure to DC(ARk`) ∩ P.

5.2. Experimental Setup

The application domain of the experiments is breast cancer treatment: a prob-
lem describes a class of patients ill with breast cancer and a solution is a treat-
ment. A problem is represented in an attribute-constraint formalism, with 22
attributes with various constraint languages Lai : 2B, singletons, numerical in-
tervals, and atomic constraint hierarchies. A solution is also represented in an
attribute-constraint formalism with 65 attributes. The case base contains 44 cases.

Variation languages are defined in the formalism of section 4.2, with the
relations δ given as examples. The training set TS is translated into 44× (44− 1) =
1892 transactions with card P = 300.

5.3. Results

From this set of transactions, C extracted 342,994 itemsets in about 1 minute
on a current PC. About 84% of this result set corresponds to itemsets with a
support lower than 3% (i.e., generalizing less than 56 transactions).

Examples of learned rules. The extracted adaptation rules are organized in a
hierarchy for �. The expert that has to validate these rules navigates in this
hierarchy. For example, the expert has found the following adaptation rule:

AR = (age, ∧ ctxt,

nb-of-FEC-cycles, ∧ dose-of-FEC, ∧ Ctxt)

where ctxt denotes some common context the two problems srce and tgt have
to share. More precisely, ctxt is a conjunction of a=i (and, thus, ctxt−1

≡ ctxt),
which involves that ai(tgt) = ai(srce) is a condition of the adaptation rule.
Similarly, Ctxt denotes some common context for the two solutions Sol(srce)
and Sol(tgt) and is a conjunction of A=j , which involves that A j(Sol(tgt)) =
A j(Sol(srce)). FEC is the name of a drug for chemotherapy that is given in several
cycles (attribute nb-of-FEC-cycles with values in Z) with a fixed dose in each
cycle (attribute dose-of-FECwith values in R).

This rule expresses that the choice of the FEC treatment depends on the age
of the patient, but does not make this dependency explicit. A navigation down
the hierarchy gives the following pair of rules:

AR1 = (ageb
∧ ctxt′,

nb-of-FEC-cycles> ∧ dose-of-FEC> ∧ Ctxt′)

AR2 = (agea
∧ ctxt′,

nb-of-FEC-cycles< ∧ dose-of-FEC< ∧ Ctxt′)

where AR2 ≡ AR1
−1, ctxt′ � ctxt and Ctxt′ � Ctxt. Each of these rules states that

the dependency pointed out thanks to AR is decreasing: when the age increases
(age(srce) b age(tgt)) the number of cycles and the dose per cycle decrease.

The expert explains this rule by (1) the fact that the growth rate of the tumour
is higher for younger patients and thus requires higher doses of chemotherapy
and (2) the necessity to make a compromise taking into account the life expec-
tation (that decreases with the age) and the life quality (that decreases with the
dose of FEC).

These rules could be learned only because an expressive language was chosen
to represent the variations between cases.

Navigating in the results. Using an expressive language to represent the varia-
tions between cases also allowed to structure the result set and to provide the
expert with efficient means of navigation in it.

Among extracted rules, only a few like ARwere extracted with a high support
value. These rules constitute a good starting point because their interpretation
is quite straightforward, which makes the expert’s work much easier during the
validation phase. However, they often appear to be too general and their contexts
of validity need to be refined. Most of the valid rules that were found had a fairly
low support. Some rules are even valid only locally, that is in a very specific
context.

To discover these rules, the generality relation � on adaptation rules was
used to structure the result set and provide the expert with efficient means of
navigation in it. For example, a filter on the result set has been implemented that
enables the expert to have access to all rules that are more specific (resp., more
general) than a given rule. Using this filter, the expert has for instance been able

to visualize the set of all rules that are more specific than AR, among which are
the rules AR1 and AR2 (since AR1 � AR and AR2 � AR).

Towards a methodology for result exploration. A methodology for the exploration of
candidate adaptation rules has emerged from these experiments. The exploration
starts with a phase of elaboration in which a search context ctxt is set up together
with the expert. This search context is used to restrict the set of rules to search
into by considering only the rules that apply to a particular medical situation.
ctxt takes the form of a conjunction of a=i with which the result set is filtered to
retain only the rules AR such that AR � ctxt. The expert is then provided with
means of navigation in the remaining rules and may choose to restrict his/her
search to the set of rules that are more specific than a particular rule.

6. Discussion and Related Work

Discussion. The learning process presented above is sensitive to the choice of
the variation languages L∆pb and L∆sol. This choice should be made according
to a bias/variance compromise [10]. If the languages are too rich, it may prevent
from learning. For example, if the language of adaptation rules L∆pb × L∆sol is
closed under disjunction, then the process learns “by heart” the adaptation rule∨
ARk`∈TS

ARk`. If this language is too poor for expressing relevant adaptation rules,

these latter cannot be learned.
In the context of a given application domain, what are the relevant languages

L∆pb and L∆sol? Consider, in the breast cancer treatment domain, two problems
srce and tgt such that age(srce) = {50} and age(tgt) = {70}. Both relations
r1 = age

δ1 andr2 = age
δ2 , with δ1 = add(20) and δ2 = multiplyBy(1.4), relatesrce

to tgt, but only r1 is relevant for the domain experts. Indeed, the comparison of
patient ages is sometimes based on differences, never (or rarely) on ratios. Then,
choosing r1 ∈ L∆pb (and, more generally, add(α) ∈ L∆age for α ∈ Z) and r2 < L∆pb,
can be justified by the assumption that the adaptation rules must be expressed
with a language compatible with the way the expert expresses comparisons
between cases. Therefore, the choice of a language bias is a knowledge acquisition
process that is similar to the process of acquiring the vocabulary for representing
cases: the latter consists in pointing out the entities for representing cases whereas
the former consists in pointing out the entities for representing case variations.

Related Work. The approach of adaptation learning from the case base presented
in this paper is inspired from the seminal work of Kathleen Hanney and Mark
T. Keane [5,6], that presents some general principles and tests them successfully
in two domains. The cases of these domains are expressed in an attribute-value
formalism. More precisely, with the notations defined above, for each i, Vi = Z
or Vi is a finite (and rather small) interval of Z, and Lai contains only singletons.
The variations are expressed by differences, i.e., with our notations, they are
conjunctions of aadd(α)

i (α ∈ Z). Therefore, the current paper may be seen as a
formalized generalization of [6]. A difference in methodology is the following:
in [6], some adaptation rules are generated that are rather specific, and then, they

are generalized using some of the R. S. Michalski’s generalization rules [8]. In
our approach, specific and general adaptation rules are generated at the same
time, which enables to organize all these rules in a hierarchy for �, that makes
navigation among them easier.

Another method for learning adaptation knowledge from the case base is
presented in [2], in which the use of the extracted knowledge significantly im-
proved the CBR process. In this work, supervised leaning methods such as deci-
sion trees are applied to learn predictive models from a set of adaptation cases.
These models are later used to reduce the set of adaptation cases to be used in a
case-based adaptation process. There are two main differences between [2] and
the work presented in this paper. First, the goal of [2] is to find adaptation knowl-
edge in the form of adaptation cases, whereas we search for adaptation rules.
Second, in [2] —and also in [6]— only pairs of similar source cases are consid-
ered for the learning process, whereas we favour the selection of every distinct
ordered pairs of cases. This is motivated by the will of not adding another bias
to the learning process.

Finally, in [3], the authors present a knowledge discovery approach for adap-
tation knowledge acquisition. They use a simple description logic for represent-
ing cases, that can be likened to the attribute-constraint formalism presented
above. The main difference with the work presented in this paper is the richness
of the variation language —and, consequently, of the adaptation rule language—
we use. Indeed, with our notations, the comparisons of two cases in [3] are only
based on a=i , a	i , and a⊕i (with ai: a problem or solution attribute).

7. Conclusion and Future Work

This paper presents a formalization of the task of adaptation rule learning from
variations in the case base and shows, through experiments in the oncology do-
main, the benefit of an appropriate representation of variations for the purpose
of this learning process. Such a representation consists in a set of binary relations
between pairs of problems and pairs of solutions. When an attribute-constraint
formalism (e.g., an attribute-value formalism) is used to represent cases, these
relations can be based on binary relations δ between constraints C1 and C2 asso-
ciated to the same attribute ai. Examples of such relations δ are presented.

An ongoing work aims at reducing the number of candidate adaptation rules
to be examined by the experts, while keeping the same adaptation knowledge. It
is based on the notion of adaptation rule composition: the composition of (r1, R1)
and (r2, R2) is the rule (r2 ◦ r1, R2 ◦ R1), provided that L∆pb and L∆sol are closed
under binary relation composition ◦. If SCAR is the set of candidate adaptation
rules that have been learned, a generative family of SCAR is a set G ⊆ SCAR such
that its closure under adaptation rule composition contains SCAR. The design of
algorithms giving G with high rates card SCAR

card G has begun. The first algorithms
implemented give a rate close to 2 (i.e., the expert’s work is divided by 2).

Assessing the quality of the learned adaptation rules may be achieved by
defining an objective measure of the quality of a rule, as it is usually done for
association rules [4]. A future work aims at defining such measures, and studying

whether they are useful to identify the most relevant adaptation rules in the
result set. For this purpose, some of the measures of association rules, such as
confidence or interest, may be adapted to the context of adaptation rules.

References

[1] J. F. Allen, Maintaining knowledge about temporal intervals, Communications of the ACM 26(11)
(1983), 832–843.

[2] S. Craw, N. Wiratung, and R. Rowe, Learning adaptation knowledge to improve case-based
reasoning, Artificial Intelligence, 170(16-17) (2006), 1175–1192.

[3] M. d’Aquin, F. Badra, S. Lafrogne, J. Lieber, A. Napoli, and L. Szathmary, Case base mining
for adaptation knowledge acquisition, in Proceedings of the International Conference on Artificial
Intelligence, IJCAI’07, 750–756, 2007.

[4] F. Guillet and H. J. Hamilton, Quality Measures in Data Mining (Studies in Computational Intelli-
gence), Springer-Verlag New York, Inc., 2007.

[5] K. Hanney, Learning Adaptation Rules from Cases, Master’s thesis, Trinity College, Dublin, 1997.
[6] K. Hanney and M. T. Keane, Learning Adaptation Rules from Cases, in Proceedings of the 3rd

European Workshop on Case-Based Reasoning, EWCBR-96, eds., I. Smith and B. Falting, volume
1168 of LNAI, Springer, 1996.

[7] J. Kolodner, Case-Based Reasoning, Morgan Kaufmann Publishers, Inc., 1993.
[8] R. S. Michalski, A Theory and Methodology of Inductive Learning, in Machine Learning, 83–134,

Springer-Verlag, 1983.
[9] C. K. Riesbeck and R. C. Schank, Inside Case-Based Reasoning, Lawrence Erbaum Associates,

Inc., Hillsdale, New Jersey, 1989.
[10] D. H. Wolpert, On Bias Plus Variance, Neural Computation, 9(6) (1997), 1211–1243.
[11] M. J. Zaki and C.-J. Hsiao, CHARM: An efficient algorithm for closed itemset mining, in

Proceedings of the Second SIAM International Conference on Data Mining, Arlington, VA, USA, April
11-13, 2002, eds., Robert L. Grossman, Jiawei Han, Vipin Kumar, Heikki Mannila, and Rajeev
Motwani, SIAM, 2002.

