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This paper clarifies the relation between case-based prediction and analogical transfer. 
Case-based prediction consists in predicting the outcome associated with a new case 
directly from its comparison with a set of cases retrieved from a case base, by relying solely 
on a structured memory and some similarity measures. Analogical transfer is a cognitive 
process that allows to derive some new information about a target situation by applying a 
plausible inference principle, according to which if two situations are similar with respect 
to some criteria, then it is plausible that they are also similar with respect to other 
criteria. Case-based prediction algorithms are known to apply analogical transfer to make 
predictions, but the existing approaches are diverse, and developing a unified theory of 
case-based prediction remains a challenge. In this paper, we show that a common principle 
underlying case-based prediction methods is that they interpret the plausible inference as 
a transfer of similarity knowledge from a situation space to an outcome space. Among all 
potential outcomes, the predicted outcome is the one that optimizes this transfer, i.e., that 
makes the similarities in the outcome space most compatible with the observed similarities 
in the situation space. Based on this observation, a systematic analysis of the different 
theories of case-based prediction is presented, where the approaches are distinguished 
according to the type of knowledge used to measure the compatibility between the two 
sets of similarity relations.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Computational analogy is a subfield of computer science that aims at designing computational models of psychological 
and cognitive processes of analogical thinking. Current research topics in this area go beyond the modeling of the analogical 
inference as a special type of reasoning (see e.g., [48,91,99] for some surveys), and include the study of the algebraic 
properties of analogies [4,25], but also of the interactions between machine learning and analogy [86,87,103], the links 
between case-based and analogical reasoning [9,43,84], and the use of analogical reasoning for explainable AI [70].

Analogical reasoning is recognized to be at the core of human thought [49,58,59]. For instance, in medicine, analogies are 
commonly used by medical experts for their role in “explaining, naming and mediating knowledge” [96]. Analogical transfer 
is the part of the analogical reasoning process that allows to leverage a mapping with an analog retrieved from memory 
in order to derive some new information about the current situation. The new information is derived by implementing a 
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special type of plausible inference principle, according to which if two situations are similar according to some criteria, 
then it is plausible that they are similar according to some other criteria. A review of the recent literature reveals a regain 
of interest in using analogical transfer e.g., for decision-making [15], preference learning [41], categorization [20], as well 
as to cope with insufficient training data [97], to guide language generation [82], to foster creativity [54] or to accelerate 
innovation [61]. The strengths of analogical reasoning methods include an ability to work with a small number of instances, 
to handle context, to produce explainable results, to leverage a structured memory or to allow for creativity. Contrary to 
most machine learning approaches, no pre-trained model of the task at hand is required. Instead, the system solely relies 
on a structured memory and some similarity measures. Despite these obvious strengths, the theoretical study of analogical 
transfer in computer science has been mostly overlooked in the past years, and developing a unified theory remains a 
challenge. Setting a common ground for analogical transfer theories would require a better understanding of the common 
principles underlying the existing approaches.

Designing computer systems that implement a form of analogical reasoning has been studied since the 1980’s in the 
field of case-based reasoning (CBR) [100]. As a research field, CBR is mostly concerned with the knowledge-engineering 
aspects that need to be addressed when designing computational analogy systems. Case-based prediction (also called case-
based inference [67]) algorithms address supervised learning tasks such as classification or regression. The most popular 
case-based prediction algorithm is (by far) the k-Nearest Neighbor algorithm, but as we will see, other algorithms have 
been proposed, such as PossIBL [66], CCBI [68], WAPC [12] or, more recently, CoAT [6]. Case-based prediction algorithms 
are known to apply the plausible inference principle of analogical transfer, according to which similar situations have similar 
outcomes. However, there is no unified theory of case-based prediction, and the relation between these types of algorithms 
and the principles of computational analogy often remains unclear.

In this paper, we show that a common principle underlying case-based prediction methods is that they interpret the 
plausible inference principle of analogical transfer as a transfer of similarity knowledge from a situation space to an out-
come space. Among all potential outcomes, the predicted outcome is the one that optimizes this transfer, i.e., the one that 
makes the similarities in the outcome space most compatible with the observed similarities in the situation space accord-
ing to some compatibility measure. Based on this observation, a systematic analysis of the different theories of case-based 
prediction is presented, where the approaches are distinguished according to the type of knowledge used to measure the 
compatibility between the two sets of similarity relations.

The paper is organized as follows. The next section presents the transfer task of computational analogy systems. Sec. 3
shows that case-based prediction methods, which implement the transfer task for prediction purposes, interpret the plau-
sible inference principle of analogical transfer as a transfer of similarity knowledge from a situation space to an outcome 
space. Sec. 4 presents a systematic analysis of existing case-based prediction theories, proposing a typology distinguishing 
between four main families of approaches. Sec. 5 to 8 describe in turn the most representative approaches for each the four 
families. Sec. 9 concludes the paper and gives directions for future work.

2. The transfer task of analogical reasoning systems

Analogical reasoning systems are often decomposed into different tasks in the literature [1,49,52,77,78]. From a cognitive 
science point of view, it is questionable to decompose the analogical inference in a succession of tasks, because analogical 
reasoning is rooted in perception, and involves complex cognitive processes that are often interwined [19]. However, such a 
decomposition greatly simplifies the conception of computer systems and allows for comparison.

The transfer task is the component of analogical reasoning systems that allows to make predictions. It implements 
analogical transfer,1 which is the part of the analogical reasoning process that allows to leverage a mapping with an analog 
retrieved from memory in order to derive some new information about the current situation [47,50,92]. It does so by 
applying a special type of plausible inference principle according to which if two situations are similar according to some 
criteria, then it is plausible that they are similar according to some other criteria. Such an inference process may serve 
different purposes [79].

• It may be used for prediction, in order to complete the description of the new case. Examples include estimating a 
quantity [95], a preference [41], a ratio [62], a semantic relation [104], recommending a decision [35] or predicting the 
effect of a decision or a plan (for example to find a response plan for natural disasters [56] or to help an athlete choose 
a pace when running a marathon [88]).

• It may be used for interpretation, in order to borrow from an analog an explanation, or a justification, of the new 
situation. Examples include deriving explanations [70,101], causal attributions [60], establishing a legal assessment [32], 
putting forth persuasive arguments in the context of adversarial reasoning [57,76], or even tapping into the emotions 
that people gained from their own experience in order to sway a decision [51].

• It may also be used for creativity, in order to propose a novel solution for the new situation, by adapting and combining 
past solutions. Examples include adapting cooking recipes in order to match some constraints [22], solving mathemat-

1 In cognitive psychology, the term analogical transfer is often used in a general sense to denote the whole analogical reasoning process. We use it here 
in a more restrictive manner, to denote the plausible inference that is triggered after the mapping has taken place, in order to derive some new information 
about the target situation.
2
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Fig. 1. A simple classification setting. The goal is to predict the class (blue circle or red square) for a new situation represented by � on the figure, by 
finding the class for which the added outcome similarities would be most compatible with the observed situation similarities.

ical problems by adapting old solution procedures [93], proposing innovative ideas for designers [54], making content 
suggestions for authors of product reviews [18] or inventing new concepts by conceptual blending [40].

Apart from the transfer task, many other tasks are cited in the literature: given a new situation, the goal of the retrieval
task is to draw from memory one (or many) situation(s) to compare it to. In the mapping task, the new situation is compared 
to the retrieved situation(s). This interpretation process involves a structural alignment between the new situation and the 
retrieved one(s) [46]. The representation task [77] produces an initial representation for the inputs. The elaboration task [44]
enriches such representation with domain knowledge. The re-representation task [85] restructures the input representation 
to facilitate comparison. The abstraction task [53] produces a common abstraction of two inputs. The validation task [42]
evaluates the quality and consistency of the results. The memorization task [59] updates the memory for later use.

In the next section, we focus on case-based prediction methods, which implement the transfer task for prediction pur-
poses.

3. Case-based prediction

Developed in the domain of case-based reasoning, case-based prediction methods aim at predicting the outcome of a 
new case directly from its comparison with a set of cases retrieved from a case base, by relying solely on a structured 
memory and some similarity measures. In this section, we show that case-based prediction algorithms interpret analogical 
transfer as a transfer of similarity knowledge from the space of situations to the space of outcomes. They predict the 
outcome that makes the similarities on outcomes most compatible with the observed similarities on situations, and differ 
mainly by the type of knowledge used to measure the compatibility between the two sets of similarity relations.

3.1. Definitions and notation

A typical setting for case-based prediction is as follows. Let S be an input space and R an output space. An element of 
S is called a situation, an element of R is called an outcome, or a result, a couple of S ×R is called a case. A case base is a 
finite set C B = {(s1, r1), . . . , (sn, rn)} of such pairs in S ×R. In addition, σS and σR respectively denote similarity measures 
on situations and on outcomes. The goal of the inference is to predict the outcome rt of a new situation t . For readability, 
and abusing the notation, cases and outcomes are sometimes denoted by their corresponding situation as subscript: a case 
is denoted by cs = (s, rs) ∈ C B , and the new case is denoted by ct = (t, rt).

As an example, consider the classification setting graphically represented on Fig. 1. Situations are points of a 2D space, i.e.
S =R2, and the similarity σS (s, t) between two situations s and t is estimated from the Euclidean distance, e.g., by setting 
σS = e−‖·‖2 , where ‖·‖2 is the Euclidean distance. Outcomes are classes, R = {blue, red}, and the similarity σR(rs, rt)

between two outcomes rs and rt is given by the discrete function that returns 1 if the two classes are the same, and 
0 otherwise. A case base C B then contains a set of points s, whose class rs is known, and the prediction task aims at 
determining the class rt of a new point t (represented as � on Fig. 1).

3.2. A transfer of similarity knowledge

For a new case ct = (t, rt) whose outcome rt is to be predicted, the case-based inference can be decomposed into three 
main tasks [52]:

• Retrieval: retrieve from C B a set of source cases {cs = (s, rs)};
• Mapping: for each retrieved situation s, estimate the similarity σS (s, t) between s and the target situation t;
• Transfer: estimate the similarities σR(rs, rt) on outcomes from the similarities σS (s, t) on situations.

The outcome rt is finally (indirectly) determined from these estimations (Fig. 2).
3



F. Badra and M.-J. Lesot International Journal of Approximate Reasoning 158 (2023) 108920
ts

rs

σS

σR

used to estimate

rt

Fig. 2. In the transfer task, a similarity relation σS is used to estimate another one, σR .

Case-based prediction methods search for an outcome rt that would make the similarity relations in the outcome space 
most compatible with the similarity relations in the situation space. Informally, compatible means that a similarity rela-
tion between two situations can be used to estimate the corresponding similarity relation between outcomes; the formal 
definition is at the core of the variety of case-based predictions methods, as discussed in details in the next sections. Let 
ĉt = (t, r) denote a potential new case formed by choosing the outcome r ∈ R for the new case. Adding the new case ĉt to 
the case base C B results in building two sets of similarity relations:

• the situation similarities �S (t) = {σS(s, t) | cs = (s, rs) ∈ C B}
• the outcome similarities �R(r) = {σR(rs, r) | cs = (s, rs) ∈ C B}

Among these two sets of similarity relations, only �R(r) depends on the choice of r: changing the outcome r leads to new 
(possibly opposite) similarity relations. The goal is to find the outcome r ∈ R for which the similarity relations �R(r) are 
the most compatible with the similarity relations �S (t). In the classification setting of Fig. 1, that would mean finding the 
class rt for which the added similarity relations �R(rt) on classes are the most compatible with the observed similarity 
relations �S (t) between points, measured by the Euclidean distance. The rest of the paper will be devoted to showing how 
this notion of compatibility is defined and measured in the different approaches.

This search for compatibility between the two sets of similarity relations can be seen as a transfer of similarity knowledge 
from the situation space to the outcome space. Indeed, each of the two similarity measures σS and σR can be seen as a 
transformation of the underlying space that “groups together” similar points in the transformed space. In this view, case-
based prediction is a search for an outcome rt for which the situations transformed by σS into similar points are also 
transformed by σR into similar points. Recent work [9] further suggests that the success of the inference only requires that 
the similarity knowledge is transferred locally, i.e., that the inference succeeds once maximally similar situations in the 
situation space are associated with similar outcomes in the outcome space.

As discussed in details in the following sections, case-based prediction methods differ by the type of knowledge used to 
express the compatibility requirement between the two similarity measures. The next section first proposes an overview, in 
the form of a typology, distinguishing the methods along this axis.

4. Proposed typology of case-based prediction methods

This section presents a systematic analysis of existing case-based prediction theories along the lines developed in Sec. 3.

4.1. Methodology

As the goal of the survey is to outline the commonalities and differences between the computational theories of case-
based prediction, all works describing representation and knowledge engineering issues (such as, e.g., learning adaptation 
rules [27,29]) are excluded from the survey. We also exclude the works that study how to apply a theory of transfer to 
handle a particular type of input (e.g., decision problems [35]), to derive a particular type of information (e.g., a preference 
ordering [41,71]), or to take into account domain knowledge [84].

However, we include a few case-based adaptation methods (see Sec. 7.2). Adaptation is the cognitive ability to envision 
a target solution that is different from any previously encountered solution. Although adaptation may involve structural 
changes that go way beyond predicting a class or a value, the case-based adaptation approaches reported here appear 
relevant for this study because they are developed to predict a single value by applying a set of adaptation rules. Reporting 
such methods is also a way to show the intimate links between case-based adaptation and case-based prediction.

4.2. Discrimination criteria

Many criteria can be used to categorize the different approaches. A few of them are reported here and applied in Sec. 4.3, 
leading to the four categories discussed in turn in Sec. 5 to 8. Note that these distinctions are best viewed as fuzzy continua, 
rather than well-defined subtypes.

Type of compatibility knowledge. A decisive criterion is the type of knowledge that is used to measure the compatibility 
between σS and σR : a set of adaptation rules, a continuity constraint, a compatibility indicator between cases or a global 
compatibility function, as discussed in the next sections.
4
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Table 1
Proposed typology of case-based prediction theories.

Approach Compatibility knowledge Prediction strategy

Evidence support A joint similarity measure, that measures how compatible 
σR is with σS for a given pair of cases.

Find the case that is most compatible with the retrieved 
cases.

Continuity constraints A set of continuity constraints, i.e., rules that state that σR

should be compatible with σS on each pair of cases.
Exclude the outcomes that are not similar enough to the 
outcomes of the retrieved cases.

Approximate reasoning A set of rules of the form (σS = α) → (σR = β). Implement a majority vote on the outcomes derived from 
the rules.

Global optimization A global function, that measures how compatible σR is 
with σS on the whole case base.

Optimize the global compatibility measure on the aug-
mented case base.

Prediction strategy. Depending on the type of compatibility knowledge that is used, different strategies are applied to eval-
uate which potential outcome is the most plausible. For example, adaptation rules are applied on a new case in a form of 
similarity-based reasoning, in order to derive an outcome that satisfies the consequent of the rule when the antecedent is 
verified (or approximately verified). Continuity constraints are used to exclude the outcomes that are not similar enough 
to the outcomes of the retrieved cases. Compatibility indicators are maximized in order to determine which potential new 
case is most compatible with the retrieved cases. A global compatibility function is maximized in order to determine which 
completed case base, when adding the new situation with its predicted outcome to the initial case base, makes σR most 
compatible with σS .

Knowledge-driven vs data-driven strategy. The different approaches can be interpreted in a bipolar framework [98]. 
Knowledge-driven strategies consider the compatibility knowledge as negative information, by taking it as a constraint 
that the two sets of similarity relations should satisfy. Such constraint can be expressed e.g., as a fuzzy implication rule 
(as in some transfer by constraint approaches) or as a set of adaptation rules (as in some transfer by approximate reasoning
approaches). The prediction strategy consists in predicting an outcome that does not violate the constraint(s). Data-driven
strategies, on the contrary, consider an observed compatibility between σS (s, t) and σR(rs, r) as positive information in favor 
of a potential outcome r ∈R. An indicator, such as a joint similarity measure (as in transfer by evidence support approaches), 
or a global compatibility function (as in transfer by global optimization approaches), is used to aggregate the observed evi-
dence in favor of each potential outcome, and the most plausible outcome is determined by a majority vote. This distinction 
between knowledge-driven and data-driven strategies is not always obvious, and some methods may be considered as be-
longing to both categories. For example, the global optimization method proposed in [6] defines an indicator that counts 
the number of times a set of continuity constraints are verified on a potential case base, and uses this indicator as positive 
information in favor of a potential outcome.

Local vs global compatibility estimation. Assuming that σS and σR are defined on different sets of attributes, the compatibility 
between two similarity measures can not be evaluated per se, but only relatively to a given set of case pairs. In this respect, 
most approaches start with a set of local compatibility estimations, and then aggregate the results. Each potential new 
case ĉt is compared to the retrieved cases (which amounts to comparing the added similarity relations �S (ĉt) and �R(ĉt)

pairwise), and the result of this estimation is aggregated in order to determine the most plausible potential outcome. On 
the contrary, the transfer by global optimization approach performs a single global compatibility estimation. It considers the 
effect of a choice for r on the compatibility of σR with σS estimated on the case base as a whole, and takes into account in 
the compatibility estimation some pairs of cases in which ct does not appear.

Ordinal vs numerical strategies. The approaches also differ by the way similarity relations are compared in order to produce 
a compatibility estimation. Some of them, such as transfer by approximate reasoning approaches, compare the values of the 
two similarity measures pairwise, while others only consider the similarity orderings to make predictions. Examples of the 
latter include some transfer by constraint approaches such as the credible case-based inference [68] or the transfer by global 
optimization method proposed in [6].

4.3. Proposed typology of case-based prediction theories

Four categories of methods are identified and summarized, respectively named transfer by evidence support, transfer by 
constraint, transfer by approximate reasoning, and transfer by global optimization. They differ by the type of compatibility 
knowledge that is used. The typology is shown in Table 1 and discussed in turn in Sec. 5 to 8 that provide more formal 
descriptions of each category.

Transfer by evidence support. This type of data-driven approach consists in using a joint similarity measure to estimate for 
each pair of cases (cs, ĉt) how compatible the similarity relation σR (rs, r) is with the similarity relation σS (s, t). Examples 
include the k-Nearest Neighbor algorithm and the Possibilistic Instance-Based Learning approach [13,34,66]. In these ap-
proaches, a new case is considered possible if the existence of a similar case is confirmed by observation. The value of the 
5
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joint similarity measure is interpreted as a degree of confirmation, or evidence support that the new case is supported by the 
retrieved source cases. The predicted outcome rt is the one for which the maximal compatibility is observed with a source 
case.

Transfer by continuity constraints. This strategy, which follows the knowledge-driven approach, consists in expressing the 
compatibility requirement between the two similarity measures σS and σR as a set of continuity constraints à la Lips-
chitz [13], for instance of the form σR(rs, rt) ≥ h(σS(s, t)), where h is a transformation function that contains the pro-
vided information about the relation between σS and σR . Examples include similarity profiles [68] or fuzzy implication 
rules [69,72,74]. Such constraints are used to reduce the set of potential outcomes, excluding the ones that violate them. 
The predicted outcome is chosen among the potential outcomes that are consistent with all constraints.

Transfer by approximate reasoning. This type of approach consists in searching where the two similarity measures σS and σR

align locally, and reason by similarity on these alignments. Potential outcomes for the new case are derived in a rule-based 
approach by applying a set of rules of the form (σS = α) → (σR = β), such as adaptation rules [7,29,75,94], co-variations [5], 
or dependencies between analogical proportions [9,17]. Some case-based adaptation approaches implement this strategy, as 
well as analogical proportion-based classifiers.

Transfer by global optimization. In most case-based prediction approaches, the compatibility of σR with σS is evaluated on 
the pair of cases (cs, ĉt) for each retrieved case cs , and the results are combined in order to find the most plausible outcome 
r for the new case. A recent work [6] proposes to define a global indicator that measures the compatibility of σR with σS

on the whole case base. The prediction strategy consists in minimizing the value of this indicator on the augmented case 
base.

5. Transfer by evidence support

In this type of approach, the compatibility of σR with σS is considered as a positive constraint, according to which the 
more similar two situations are, the more plausible it is that their outcomes are similar. The compatibility knowledge used in 
the inference takes the form of a compatibility indicator σ between cases, defined as a joint similarity measure [2,13,34,66]. 
The prediction strategy consists in choosing the new case ct = (t, rt) that is the most compatible with the retrieved source 
cases according to the compatibility indicator.

5.1. General principles

The compatibility indicator σ measures the compatibility of σR with σS on a pair of cases (cs, ĉt), and is used as an 
indicator of the plausibility of a new case ĉt when compared to a retrieved case cs . These plausibility estimations are then 
aggregated on a selected set of source cases. The general idea is therefore to successively:

1. compare the potential new case ĉt to a set of source cases cs;
2. aggregate the values of the compatibility indicator σ for the pairs of cases (cs, ĉt);
3. predict the outcome rt that makes the new case ĉt = (t, r) most compatible with the retrieved source cases.

In the rest of the section, two approaches of this category are described in more details: the k-Nearest Neighbors ap-
proach and the Possibilistic Instance-Based Learning method.

5.2. k-Nearest Neighbors

In a classification setting, the k-Nearest Neighbor approach [2] makes a majority vote among the classes of the k nearest 
neighbors of the target situation t in order to predict its class rt .

A source case cs = (s, rs) is considered compatible with a new case ct = (t, r) if it is among the k nearest neighbors 
of ct for σS (i.e., σS(s, t) = 1 if s is in a neighborhood Nk(t) of t , and 0 otherwise), and belongs to the same class (i.e., 
σR(rs, r) = 1 if the two classes are the same, and 0 otherwise). The compatibility indicator σ is the joint similarity measure:

σ(cs, ct) = σS(s, t) · σR(rs, r).

The values of the compatibility indicator σ are aggregated by summing over all retrieved source cases cs , and the 
predicted outcome rt is the one that makes the new case ct most compatible with all source cases, so that

rt = arg max
r∈R

( ∑
σS(s, t) · σR(rs, r)

)
.

cs∈CB

6
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5.3. Possibilistic Instance-Based Learning

A possibilistic counterpart of the previous approach consists in considering a relaxed expression of the relation rule, of 
the form “the more similar two situations are, the more possible it is that their outcomes are similar” [13,34,38,66,72,73]. 
Such a rule is formalized in the formal framework of possibility theory (see e.g. [39]), which constitutes an uncertainty 
modeling paradigm that generalizes the probability theory. More precisely, such a rule constrains the possibility distribution 
on potential new cases ct = (t, rt), i.e. the possibility degrees δ(ct): each source case cs = (s, rs) is then associated with the 
following constraint on the possibility distribution:

δ(ct) ≥ min{σS(s, t),σR(rs, r)}.
The constraint expresses that a lower bound of the degree of possibility δ(ct) of a new case ct is given by the value of the 
joint similarity measure

σ(cs, ct) = min{σS(s, t),σR(rs, r)}.
The possibility degree δ(ct) is interpreted as a degree of confirmation, or evidence support that the new case ct is sup-

ported by the retrieved source cases. A new case is considered possible if the existence of a similar case is confirmed by 
observation, and data accumulation can only result in increasing the support for the new case. Therefore, the possibility 
degrees are aggregated using a principle of maximal informativeness:

δ(ct) ≥ max
cs∈C B

σ(cs, ct).

The predicted outcome rt is the one that is most supported by the retrieved source cases, i.e.,

rt = arg max
r∈R

(max
cs∈C B

min
r

{σS(s, t),σR(rs, r)}).

6. Transfer by constraint

A complementary, more knowledge-driven approach, consists in taking the compatibility of σR with σS as a negative
constraint, that is used to exclude the outcomes that are not similar enough to the outcomes of a retrieved case. The 
compatibility knowledge used in the inference is a set of continuity constraints such as similarity profiles [64,67,68], or fuzzy 
implication rules [33,69,73,74]. Such a continuity constraint is interpreted as a negative information according to which 
it is not plausible to observe situations very dissimilar for σR when they are similar for σS [13]. The prediction strategy
consists in using these constraints to exclude the potential outcomes that violate them. For each retrieved case cs = (s, rs)

and a potential new case ĉt = (t, r), the compatibility of the outcome r with a continuity constraint is estimated by testing 
whether the pair (cs, ĉt) satisfies the constraint or not. The resulting compatibility estimations are then aggregated on all 
retrieved cases cs . The predicted outcome rt is then chosen among the outcomes r that are most compatible with the 
constraints.

6.1. Credible case-based inference

Continuity constraints can be expressed by stating that if two situations are above a similarity threshold α for σS , 
then it is likely that their similarity for σR is greater or equal than a value β . The function h : [0, 1] −→ [0, 1] which 
associates to each similarity level α for σS a similarity level β for σR is called a similarity profile [64,67,68]. It is defined as 
h(α) = inf{σR(rs, rs′ ) | σS(s, s′) = α}. Assuming that h is known, one can compute for a new situation t the set

C(t) =
⋂

cs∈C B

{r : σR(rs, r) ≥ h(σS(s, t))}

of credible solutions by taking, for each retrieved source case cs , the set of outcomes r that would satisfy the constraint. 
The problem is then to learn the similarity profile h. In [69], this function is approximated by a step function, which is 
learned from the data. In [3], each hypothesis for h is a multi-category classifier. Determining the levels β of a similarity 
profile from the data is a task that is very sensitive to outliers. Two solutions are investigated in [67] to alleviate this 
issue: learning local similarity profiles for different regions of space, or weaken the concept of similarity profile by looking 
for levels that are “almost valid”, e.g., by defining a probabilistic similarity profile [64]. Besides, enough data is needed 
to learn the profiles. The credible case-based inference has been proven to be a special case of integrity constraint belief 
merging [21].
7
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6.2. Gradual rules

Gradual rules [36] are linguistically expressed as “the more X is A, the more Y is B” and modeled in the formal 
framework of fuzzy set theory (see e.g. [37]): A and B are imprecisely defined concepts, modeled as fuzzy sets on the 
universes of X and Y , respectively. The general semantics of such rules [36] is expressed in terms of membership degrees by 
B(Y ) ≥ A(X), which is equivalent to a set of constraints of the form (X ∈ Aα) −→ (Y ∈ Bα) stating that if the membership 
degree of X in A is at least α, then it is guaranteed that the membership degree of Y in B is also at least α. A specific 
case of such gradual rules is linguistically expressed as “the higher X , the higher Y ”, whose semantics directly applies to 
the numerical values taken by X and Y , instead of their membership degrees to the concepts A and B .

Such gradual rules can be used to express some continuity constraints that should be satisfied by a pair of cases (cs , ct): 
the constraint “the more similar two situations are, the more similar are their associated outcomes” can be formally defined 
as

σR(rs, r) ≥ σS(s, t).

The transfer inference consists, as in the credible case-based inference, in choosing a potential outcome rt among the 
ones that satisfy the constraint for all source cases, that is,

rt ∈
⋂

cs∈C B

{r : σR(rs, r) ≥ σS(s, t)}.

Although the approach can be refined by applying a non-decreasing function h : [0, 1] −→ [0, 1] to define rules of the 
form σR(rs, r) ≥ h(σS(s, t)), the gradual rule approach is not very flexible because it is very sensitive to outliers. Indeed, an 
outcome r is ruled out of the set of potential results whenever the constraint σR (rs, r) ≥ σS (s, t) is not satisfied for at least 
one source case. This remark advocates for the use of a different type of fuzzy rule, such as a certainty rule, which allow 
for exceptional situations.

6.3. Certainty rules

Certainty rules are linguistically expressed as “the more X is A, the more certain Y lies in B”. Their semantics is modeled 
in the possibility theory framework, formalized by the following constraint on the conditional possibility distribution πY |X :

∀(x, y) ∈ D X × DY , πY |X (y | x) ≤ max(1 − A(x), B(y)),

where D X and DY are the domains of X and Y , respectively.
Such a constraint implies that 1 − A(x) is an upper bound of the possibility that Y = y when y is not in the support of 

B (i.e., when B(y) = 0).
Thus the rule “the larger the similarity of two situations is, the more certain it is that the similarity of corresponding 

outcomes is large” can be formalized as

π(r | t) = πσR |σS (σR(rs, r) | σS(s, t)) ≤ max(1 − σS(s, t),σR(rs, r)).

This formalization takes the situation dissimilarity 1 − σS(s, t) as an upper bound for the possibility of an outcome r when 
σR(rs, r) = 0. If σS (s, t) is very small, the possibility bound can be large for very dissimilar outcomes. If, on the contrary, 
σS(s, t) is close to 1, the possibility bound can only be large for very similar outcomes.

The possibility degree π(r | t) is interpreted as the degree to which the comparison of ct with the retrieved source cases 
does not exclude the outcome r as a candidate. A new case ct is considered possible if the application of a continuity 
constraint does not rule it out as having an outcome too dissimilar with the outcome of a retrieved source case, and 
data accumulation can only result in decreasing the possibility of certain outcomes. Therefore, the possibility degrees are 
aggregated using a principle of minimal specificity:

π(r | t) = min
cs∈C B

(max(1 − σS(s, t),σR(rs, r))).

The predicted outcome rt is the one that is the most possible given the retrieved source cases:

rt = arg max
r∈R

( min
cs∈C B

(max(1 − σS(s, t),σR(rs, r)))).

7. Transfer by approximate reasoning

The third type of approach consists in searching where the two similarity measures σS and σR align locally, and reason 
by similarity on the found alignments. The compatibility knowledge takes the form of a set of rules providing information on 
relations between the similarity measures σS and σR , expressing that when σS takes value α, the resulting similarity level 
8
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for σR is β: these rules can be written (σS = α) → (σR = β) and can be expressed in various forms, such as adaptation 
rules [7,29,75,94], dependencies between problem and solution features [45], co-variations [5] or fuzzy rules [16] to name 
a few. The prediction strategy consists in triggering the rules on pairs of cases involving the new case using a kind of 
similarity-based inference, as detailed below, in order to derive potential outcomes for the new case.

7.1. General principles

A rule (σS = α) → (σR = β) is a piece of knowledge that states that σR is compatible with σS when σS takes the value 
α, and that the resulting similarity level for σR is β . Potential outcomes r for the new case are derived by triggering such 
rules on pairs of cases involving the new case in a form of similarity-based inference (SBI), by applying variants of the 
modus ponens schema [11,16,28,102]: for a retrieved case cs = (s, rs) and a potential new case ĉt = (t, r), triggering the rule 
(σS = α) → (σR = β) on the pair of cases (cs, ĉt) is of the form

(σS = α) → (σR = β) σS(s, t) ≈ α

σR(rs, r) ≈ β
(SBI)

This schema expresses that if the rule associates a level β for the similarity σR whenever the similarity level for σS is α, 
and if the observed situation similarity between the new case and a retrieved case is approximately α (i.e., σS(s, t) ≈ α), 
then the corresponding similarity on outcomes σR(rs, r) is approximately β . The concepts “approximately x” where x is a 
numerical value, are imprecisely defined concepts that can be modeled in the formal framework of fuzzy set theory [81].

It is often the case that the similarity measures σS and σR are unknown, or difficult to assess globally on the training 
data. One strategy then consists in working with some local approximations σ̃S and σ̃R of σS and σR respectively, that are 
known to be compatible for some pairs of cases of the case base. The resulting rules (σ̃S = α) → (σ̃R = β) are adaptation 
rules (see Sec. 7.2).

Some case-based prediction approaches such as [75] include a rule selection step prior to the inference, while others 
such as proportion-based analogical classifiers (see Sec. 7.4) trigger only one rule.

Each selected rule is triggered on a set of pairs of cases (cs, ĉt), and the proposed outcome rt for the new case ct is 
obtained by a majority vote among the potential outcomes r derived from the rules:

rt = arg max
r∈R

∑
(σS=α)→(σR=β)

|cs ∈ C B | σS(s, t) ≈ α and σR(rs, r) ≈ β|.

In the rest of the section, three kinds of approaches of this category are described in more detail: rule-based adaptation, 
the analogical jump, and analogical proportion-based classification.

7.2. Rule-based adaptation

Adaptation rules are rules of the form (σ̃S = α) → (σ̃R = β), where σ̃S and σ̃R are local approximations of σS and 
σR . The main difficulty when working with adaptation rules is that one needs to be able to learn the rules. They may be 
acquired from different sources such as a domain expert [83,95], the user [8], or learned from data [7,27,29,55,75,89]. In [95]
for example, some adaptation rules are learned from the expert in the form of qualitative proportionalities y = qprop+(x). A 
qualitative proportionality is a qualitative constraint that indicates a co-monotony between two variables, such as “a larger 
apartment has a higher rent”. The relationship between the two variables (for example here, nb_rooms and price) is 
assumed to be linear, and the ratio coefficient is learned by linear regression. If Q denotes the ratio coefficient, this amounts 
to defining a similarity σS on the values of the attribute nb_rooms, a similarity σR on the values of the attribute price, 
and applying the (SBI) inference schema with the hypothesis that σR increases linearly with σS , i.e., with the hypothesis 
that β = Q α. Another example is the work of [89], which learns adaptation rules from data at runtime by considering only 
the pairs of situations (s, t) in which s differs from t only in the value of a single attribute (say, nb_rooms in the previous 
example), and retrieves from the case base another pair of situations (si , s j) where the same difference is observed on this 
attribute. This approach amounts to learning a rule (σ̃S = α) → (σ̃R = β) by single instance induction, once the rule is 
verified on only one pair of cases.

A key question is to decide which rule can be considered as a valid piece of knowledge to be used in the similarity-based 
inference. Taking into account the support of the rule is important. Even a very specific rule, when learned with a support of 
1 as in the previous paragraph, may be dubious, because it amounts to single instance induction. Several works [11,17,30,95]
have emphasized the idea that the rules (σ̃S = α) → (σ̃R = β) that are reasoned upon should be functional dependencies, 
i.e., have a confidence value of 1 on any two pairs of cases of the case base. From this observation, [5] defined a variation as 
any function that associates a value to a pair of situations, and a co-variation as a functional dependency between variations. 
For example, the variation nb_rooms≤ : S × S �→ {0,1} maps a pair of apartments to 1 if the number of rooms increases, 
and to 0 otherwise, and the co-variation (nb_rooms≤ = 1) → (price≤ = 1) expresses that if the number of rooms of an 
apartment increases, then the price also increases. This rule can be used to draw the following similarity-based inference: 
9
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if a pair of cases verifies nb_rooms(s) ≤ nb_rooms(t), then the antecedent of the rule is satisfied, so one can make the 
hypothesis that the rule applies, and that price(rs) ≤ price(r). In this example, the inference schema (SBI) writes:

(nb_rooms≤ = 1) → (price≤ = 1) nb_rooms≤(s, t) = 1

price≤(rs, r) = 1

Learning such co-variations from data corresponds to the task called gradual pattern mining, for which various meanings 
and approaches have been proposed [5,14,31,65,80].

7.3. The “analogical jump”

A crude version of the transfer by approximate reasoning approach was studied from a logical point of view in the 1980s. 
In their seminal work on the formalization of analogical transfer, the authors of [30] introduce an inference schema, called 
the “analogical jump” (AJ):

P (cs) P (ct) Q (cs)

Q (ct)
(AJ)

According to this schema, analogical transfer consists in making the hypothesis that if cs and ct share some property P , and 
a property Q is true in cs , then it is plausible that the property Q is also true in ct . The problem identified by the authors 
is then to determine sufficient conditions for the inference (AJ) to be drawn. The authors remark that the rule should:

(i) be weaker than a generalization rule ∀x P (x) ⇒ Q (x) (otherwise, the inference is simply deductive),
(ii) on the contrary, be stronger than single instance induction, which would consist in applying the rule ∀x∀y [(P (x) ∧

P (y) ∧ Q (x)) ⇒ Q (y)], and
(iii) take into account the level of similarity between cs and ct .

The analogical jump can be formalized as rule-based adaptation, considering the adaptation rule (σ̃S = 1) → (σ̃R = 1), 
with

σ̃S(s, t) = 1P (s, t) =
{

1 if both P (s) and P (t) hold

0 otherwise

σ̃R(rs, r) = 1Q (rs, r) =
{

1 if both Q (rs) and Q (r) hold

0 otherwise

For a retrieved case cs = (s, rs) and a potential new case ĉt = (t, r), drawing the inference schema (AJ) amounts to applying 
the following version of the similarity-based inference schema (SBI):

(σ̃S = 1) → (σ̃R = 1) σ̃S(s, t) = 1

σ̃R(rs, r) = 1

This inference schema states that if we know that the property Q is shared between two cases whenever the property P
is shared ((σ̃S = 1) → (σR = 1)) and if it was observed that the two cases share the property P (σ̃S(s, t) = 1) then one can 
make the hypothesis that they also share the property Q (σR(rs, r) = 1).

The key question is to decide if it is legitimate to consider the rule (σ̃S = 1) → (σ̃R = 1) as a valid piece of knowledge 
from which to derive that Q (ct) holds. If one requires that the rule is verified on only one pair of cases, then it amounts 
to single instance induction. If one requires that the rule has a confidence value of 1, then the rule ∀xP (x) ⇒ Q (x) is in 
particular valid on all source cases, and the (SBI) inference amounts to simple deduction.

7.4. Analogical proportion-based classification (APC)

This section reports the work presented in [9], that proposes to establish a correspondence between analogical 
proportion-based classification (denoted by APC, in what follows) and case-based prediction, showing the former can be 
viewed as a special kind of the latter.

APC algorithms have been applied to classification and recommendation tasks, see e.g. [12,17,23–26,63,90]. They apply 
the principle of analogical reasoning [58], based on statements of the form “a is to b as c is to d”, called analogical 
proportion, and written a :b ::c : d. More precisely, the analogical inference is applied in a classification setting to state 
that if an analogical proportion holds on the instance descriptions, then an analogical proportion can be inferred on their 
associated class labels: formally, denoting f the underlying, unknown, labeling function, one can derive from a : b :: c :
d that f (a) : f (b) :: f (c) : f (d). Let D be a data set containing a set of instances a,b,c, . . . with their associated labels 
f (a), f (b), f (c), . . . To predict the value f (x) for a new instance x, an analogical proportion-based classifier considers all 
10
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Fig. 3. In APC methods, both situations and outcomes represent ratios.

triples (a,b,c)∈ D3 for which a:b ::c: x holds, and the equation f (a) : f (b) :: f (c) : y has a solution. This set of triples is called 
the analogical root of x [62]. The predicted label for the new instance x is then the result of a majority vote among the 
potential solutions y. Yet it can be the case that the analogical root is empty: the previous classifier can then be extended 
to consider approximate analogy, relying on the notion of analogical dissimilarity [62]. The latter is defined as a function 
AD(a, b, c, d) that quantifies the extent to which the quadruplet is far from satisfying an analogical proportion: AD is such 
that AD(a, b, c, d) = 0 iff a:b ::c: d and satisfies constraints on argument permutation and a triangular inequality [12]. For 
real or Boolean values, it can for instance be defined as the sum of the componentwise AD(a, b, c, d) = ‖(a − b) − (c − d)‖1. 
If the analogical root of x is empty, the search for potential solutions is extended to triples (a, b, c) with the k least values of 
AD(a, b, c, x) and for which the equation f (a) : f (b) :: f (c) : y has a solution. The predicted label is the result of a majority 
vote among the potential solutions y.

This correspondence between APC and case-based prediction is illustrated by the diagram given in Fig. 3 that represents 
the APC in a similar view as case-based prediction, whose diagram is given in Fig. 2. More precisely, APC can be consid-
ered as applying a specific transfer by approximate reasoning method, where cases are differences, or ratios between two 
instances, and a single rule is triggered, that states that maximally similar situations should be associated with maximally 
similar outcomes.

When seen as a case-based prediction method, APC works by comparing some ratios a : b and f (a) : f (b) between the 
instances and their respective labels. Assuming that both instances and labels are vectors, considering one-hot encoding for 
the classes, these ratios are represented by the differences s = a − b and rs = f (a) − f (b). Let us denote by x ∈ D a new 
instance for which the class f (x) is to be predicted. Let C be the set of potential classes for f (x), and y ∈ C . The source 
case cs and potential new case ĉt are of the following form:

cs = (a − b, f (a) − f (b)),

ĉt = (c − x, f (c) − y),
(1)

where a, b, c are instances of D , and f (a), f (b), f (c) their associated classes.
The two similarity measures σS and σR are constructed from the analogical dissimilarity AD , by noticing that AD mea-

sures a distance AD(a, b, c, d) = δ(a − b, c − d) between two differences a − b and c − d. The similarity measures σS and σR

are obtained by applying a strictly decreasing function to the distance δ, e.g., by choosing σS = σR = e−δ . The similarity mea-
sure σS is such that the four instances a, b, c, d form an analogical proportion iff σS (a−b, c−d) = 1. The similarity measure 
σR is such that the four instances f (a), f (b), f (c), f (d) form an analogical proportion iff σR ( f (a) − f (b), f (c) − f (d)) = 1.

The transfer strategy can be interpreted as a transfer by approximate reasoning strategy when the prediction procedure 
is decomposed, as described in [84], an aggregation of the potential solutions y found for each instance c ∈ D followed by 
a majority vote. In this view, the search for potential solutions y consists in successively:

• building the case base {cs = (s, rs) = (a − b, f (a) − f (b))};
• enumerating all instances c, and for each of them,

– Retrieval: retrieve all source cases cs = (s, rs);
– Mapping: compute the similarity σS (s, t) between s = a − b and t = c − x;
– Transfer: if σS (s, t) = 1 holds (i.e., a, b, c, x are s.t. a : b :: c : x), find the solutions y such that σR(rs, r) = 1, with 

rs = f (a) − f (b) and r = f (c) − y.

This decision procedure thus considers all pairs (cs, ĉt) that can be obtained from a triple (a, b, c), and searches for potential 
solutions y that can be inferred by applying the following similarity-based inference on a pair (cs, ĉt):

(σS = 1) → (σR = 1) σS(s, t) = 1

σR(rs, r) = 1

The analogical root of x corresponds to the set of triples (a,b,c) for which the similarity-based inference allows to infer 
a solution y. The predicted solution f (x) is the solution y that is inferred on the maximal number of pairs (cs, ĉt) by 
triggering the rule.
11
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If the analogical root of x is empty, analogical classifiers extend the search to triples with lowest analogical dissimilarity, 
i.e., with highest value for the similarity σS . This amounts to relaxing the condition σS (s, t) = 1 to the condition σS (s, t) ≈ 1. 
The similarity-based inference becomes:

(σS = 1) → (σR = 1) σS(cs, ĉt) ≈ 1

σR(cs, ĉt) = 1

Only the k solutions y that are derived from the rule (σS = 1) → (σR = 1) with the highest values of σS (cs, ĉt) are added 
to the solution set.

8. Transfer by global optimization

A recent work [6,9,10] proposes to define a global indicator that measures the compatibility of σR with σS on the whole 
case base. The compatibility knowledge takes the form of a global function 	(σS , σR , C B), that measures the compatibility of 
σR with σS on any potential case base C B . The prediction strategy consists in completing the description of a case base in 
order to minimize the value of the global indicator.

This principle is implemented in the CoAT, for Complexity-based Analogical Transfer, algorithm [6,10]. In the CoAT
method, the compatibility of σR with σS is measured from an ordinal point of view on the whole case base C B , by checking 
if σR orders the cases in the same manner as σS . The following continuity constraint is tested on each triple of cases 
(c0, ci, c j), with c0 = (s0, r0), ci = (si, ri), and c j = (s j, r j):

if σS(s0, si) ≥ σS(s0, s j), then σR(r0, ri) ≥ σR(r0, r j). (C)

The constraint (C ) expresses that anytime a situation si is more similar to a situation s0 than situation s j , this order should 
be preserved on outcomes. A triple (c0, ci, c j) does not satisfy the constraint if situation si is more similar to s0 than 
situation s j for situations, but less similar for outcomes, i.e., when σS (s0, si) ≥ σS(s0, s j) and σR(r0, ri) < σR(r0, r j). Such a 
violation of the constraint is called an inversion of similarity. A global indicator 	(σS , σR , C B) is introduced, that counts the 
total number of inversions of similarity observed on a case base C B:

	(σS ,σR , C B) = |{((s0, r0), (si, ri), (s j, r j)) ∈ C B × C B × C B such that

σS(s0, si) ≥ σS(s0, s j) and σR(r0, ri) < σR(r0, r j)}|.
When the case base is fully known, except for the outcome rt of one case ct = (t, rt), the transfer inference consists in 

finding the outcome rt that minimizes the value of the 	 indicator:

rt = arg min
r∈R

	(σS ,σR , C B ∪ {(t, r)}).

A main difference with other theories of case-based prediction lies in the set of pairs considered to estimate the com-
patibility between the two similarity measures σS and σR . The compatibility estimator 	 considers all triples (c0, ci, c j), 
and checks for each triple if σR orders the two pairs of cases (c0, ci) and (c0, c j) in the same way that σS does. Therefore, 
some pairs of cases in which ct does not appear are taken into account in the compatibility estimation. This is different from 
other theories of case-based prediction, in which the compatibility of σR with σS is estimated solely on the pair of cases 
(cs, ct) for each retrieved case cs (i.e., the two sets of similarity relations �S (t) and �R(r) are compared two by two), and 
the results are combined in order to find the most plausible outcome r for the new case.

This approach also shares some commonalities with other approaches. Constraint (C ) can be seen as a qualitative version 
of the continuity constraint σR (rs, rt) ≥ h(σS(s, t)) used in transfer by constraint methods (see Sec. 6). The global indicator 
	 measures the extent to which this continuity constraint is verified on the whole case base. The inference also consists, 
as in transfer by evidence support approaches, in optimizing a global indicator. But the indicator is defined on all triples of 
cases, and not only on the pairs of cases involving ct .

9. Conclusion and further work

This study constitutes the first survey of the wide and rich domain of case-based prediction. At the intersection of 
case-based reasoning and computational analogy, this systematic analysis of the literature both contributes to developing 
a unifying theory of case-based prediction, and to setting a formal ground to a general theory of analogical transfer in 
computer science.

Case-based prediction methods are diverse, and therefore developing a unified theory is challenging. The present work 
makes an important contribution in that direction, by showing that all case-based prediction methods share a common 
principle, which is to interpret the plausible inference of analogical transfer as a transfer of similarity knowledge that the 
predicted outcome should optimize. In this respect, all approaches follow the same objective, which is to find the outcome 
that makes the similarities in the outcome space most compatible with the observed similarities in the situation space. 
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However, they differ in the way compatibility is measured: depending on the type of approach, the compatibility measure 
either takes the form of a joint similarity measure, some continuity constraints, a set of rules, or a global indicator. The 
prediction strategy varies accordingly: it consists either in maximizing an indicator, finding the outcome that is the most 
consistent with a set of continuity constraints, or making a majority vote on the outcomes derived from a set of rules.

By eliciting some shared principles among case-based prediction methods, this work also contributes to setting a formal 
ground to the theory of analogical transfer in computer science. Although case-based prediction methods only constitute 
a subset of analogical transfer methods, which are designed to apply analogical transfer to prediction tasks such as clas-
sification or regression tasks, these new insights suggest that it makes sense to model analogical transfer as a transfer of 
similarity knowledge between two description spaces. These theoretical advances help to better understand the role of the 
similarity knowledge in the inference, and will allow for new developments in the study of analogical transfer. Such ad-
vances are needed because analogical transfer methods are gaining attention in many domains, and in particular in machine 
learning. Its inference principle, which consists in deriving new information from a set of comparisons with previous ex-
periences, is attractive because it allows to produce inferences that are interpretable, take into account a memory of past 
experiences, allow for creativity, and take into account domain knowledge, context, and similarity.

Further work includes making an extensive survey of analogical transfer methods, that would encompass not only predic-
tion tasks but also interpretation and creativity tasks. It would be interesting to study if the inference principles identified 
in this paper for case-based prediction methods also apply when analogical transfer is used e.g., for adaptation, or case-
based explanation. Another research direction would consist in providing a shared implementation of the main case-based 
prediction algorithms. It would allow the different algorithms to be tested on real-world scenarios, and compared. Finally, 
the modeling of analogical transfer as a transfer of similarity knowledge between two description spaces allows to address 
one major challenge, which is to learn a similarity measure that is adequate for a given transfer task.
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